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*: . Introduction
This paper presents an expressional loop notation based on the ideas described in [16.171. The notation

makes it possible to represent loops as compositions of finctions applied to sequences of values. The
principal benefit of the notation is that it brings the powerful metaphor of'expressions and decomposability to
bear on the domain of loops. Wherever this metaphor can be applied, it makes algorithms much easier to
construct, understand, and modify.

The paper is divided into four parts. The first part discusses what it neans to view a loop as an expression
composed of functions operating on sequences of values. It then presents the major features of the notation
in terms of the expressional inctiphor. It cencludes by discussing the key places where the notation does not
completely support the expressional metaphor.

fhe impkemeniation of the notation does not Support sequences as actual data objects, but rather compiles
loop expressions into iterative loops which operate on sequences one element at a time. 'lic second section of
the paper presents a number or additional features of the notation which are best understood from the point
of view of this element at a time perspectivc. 'This part of the paper concludes with a large example which
shows the way the notation is intended to be used.

The third section of the paper evaluates the notation from several points of view. First the limits of the
applicability of the notation are described in detail. The notation is not intended to be applicable to every

-kind of loop. Rather, it is designed to make it particularly easy to represent and manipulate the kind of
straightfirward loops which appear most commonly in programs. By focusing on the main concept and
resisting the temptation to add embellishments, the notation is rendered semantically clean and easy to
understand.

Second. the efciency of the code produced for loop expressions is discusied. 'Due to the fact that the
notatfon can be directly compiled into iterative loop code, there is no need to sulrer the kind of efficiency
penalties which would bc associated with actually implementing the notation in terms of data objects
representing sequences. Appendix A contains an in depth description of the compilation process.

Third. it is argued that the notation could be implemented as a logical extension to almost any language.
The notation has already been implemented as a I.ispMachinc[18J/MacLisp[9J macro package LETS
("let es'). (Note that several of the macros described in this paper end in the letter "S". Tlhis "S" stands for
"sequence", and in all cases it is pronounced separately.) This paper disusses the notation in thc context of
this particular implementation and the examples are all couched in terms of L.isp. However, none of the basic
concepts behind the notation have anything to do with the Lisp language per se. Introducing the expressional
notation as an extension to the language Ada [11 is discussed.

The fburth and final part of the paper presents a comprehensive comparison between the expressional
notatk)n and other looping constructs. The concept of expressional loops presented here was motivated by
observing regularities in the kinds of straightforward loops which appcar in programs most often 1161. Over
the years, many language designers have also noticed various aspects of these regularities and therefore many
of the key features of the expressional notation appear in one firm or another in currently existing looping
constructs. The constructs which are most similar appear in the languages API. 110. Hibol 1131, and
Model [ll]. ''he advantage of the notatkin presented here is that it distills these concepts into a semantically
complete whole which is easy to understand, easy to compile, and easy to add as an extension to current
languages.

V....

.. ---.
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i "The Expressional Metaphor

'lhe key property of expressions which makes them particularly cmy to construct manipulate, and
understand is decomposability. Given an expression, it is easy t) decompose it into separate parts each of
which (in the absence of side-cffects) cam be completely understood in isolation from all of the other parts.
Further, the behavior of the expression as a whole is mcrely the composition of the behaviors of its parts.

*~i Consider the expression "(SIN (SORT X))". Its two parts can be understood in isolation. For example,
you can understand what the SORT does (i.e., compute the square root of its input) without having to think
about where its input comes from. where its output will be used, or about anything else that is going on in the
expression. The only interaction between the two functions is the data flow between them. In order to

. understand what the expression as a whole does, (i.e., compute the sine of the square root of its input) you
merely have to compose your understandings of the two functions.

"The primary goal behind the design of the loop notation presented here has been the development of a
notation which has the property of decomposability.

Viewing Loops as Expressions Involving Sequences
In order to represent loops as expressions, the concepts of sequences and sequence functions which operate

; on them are introduced. In this context, all other data structures are referred to as unitary. A sequence is an
ordered (pqssibly infinite) one dimensional seies of unitary data objects. A sequence function is a function
which produces one or more sequences as outputs and/or consumes one or more sequences as inputs. Loops
are represented as expressions built out of sequence function applicatiors.

Flor reasons of efficiency, sequences are not represented as actual data structures at run ime. Rather,

expressions involving sequences are compiled into iterative loops in which the existence of the sequences is
only implicit. This is analogous to the way in which many program constructs arc handled by compilers. For
example, references to compments of a record structure in a program typically appear to pass indirectly
through the structure as a whole. However, for efficiency, %uh references are generally compiled into direct
accesses on the components as if they were atlmic objects. The existence of the structure as an identifiable
unit is only implicit in the compiled code.

S., Sequences and sequence functions exist as explanatory.devices. The point is that thinking of loops as
compositions of finctions operating on sequences makes them easier to understand. The fact that the
compiled fn is very different is in general of no import. (The second part of this paper discusses situations
where the user does have to be cogni'ant of the compiled form.)

Consider the program SUM-POSITIVE-EXPRESSIONAL below, Its body is a sequence expression which
sums up the positive elements of a one dimensional array. Given an array containing <0 I -1 2 -2> the
program would produce the result 3.

(defun sum-posltive-9xpressional (vector)
(Rsum (Fgreater (Evector vector))))

i.
lhe se-uncce function EVECTOR ("ee v lcr,) takes in a one dimensional array and enumerates a -sequence

of the data items in the array (e.g., producing the sequence (0 -1 2 -2)). (Note that the names of the
built-in sequence functions all begin with prefix letters. 'bcse letters indicate the type of operation
performed by the sequence function. 'Ihe letter "E" stands for enumerate, "G" stands for generator, "F"
stands fi)r filter, and "R" stands for reduce. In each case, these prefix letters are pronounced separately.)

'lIVt sequence function FGREATER ("efgrrater") takes in a sequence and filters it producing a .quence
containing only the positive elements in the input sequence (e.g., producing [_ 1 - 2 _]). Note that the
action of the filter is encoded by leaving .ome of the slots in the outpot sequence empty (symbolized by "2')
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" T rather dian by creating a sequence of icduced length. In order to make this work. everything is sct up so that
empty slots are ignored in subscquent computations. 'Me reason why the concept of empty slots is useful
stems from the clement at a lime metaphor and will be discussed in the second part of this paper.

'llc sequence function RSUM ("ar suwe") takes in a sequence of integers and reduces it to a unitary object
containing their sum (e.g.. 3). *ibc sequence ex)ression above is easy to understand becaue the actions of the
sequence fnictions can be understood in isolation from each other. and the action of the expression as a
whole (i.e., to sum the positive elements of a vector) is simply the composition of these actions. Further. it is
as easy to modify as any other expression.

Simple Examples o' Sequence Functions

'T'his section presents a number of built-in sequence functions which are used in examples in the rest of
this paper, The complete set of built-in sequence functions provided as part of the LETS macro package is
presented in Appendix B. 'lere are three basic kinds of sequence functions: uniar)L*sequence,
*s'qgence-unitary and sequence+seqence. The most common kind of unilar)-sequence function takes some
aggregate data object and creates a sequence of its components.

Eliat list
Takes in a list and creates a sequence of its elements.
e.g., (El ist '(1 2 3)) -) El 2 3]"ir

Esubl tats list
-' Takes in a list and creates a sequence of its successive sublists.

e.g., (EsubIists '( 12 3)). (12 3) (2 3) (3)]

Evector vecor&opttonal (first O) (last (I- (array-length vector)))
Takes in a one dimensional array and creates a sequence of its elements.
e.g.. (Evector <1 2 3>) a> [1 2 3]

Eft l fil- name
Creates a sequence of values by reading all of the objects out of the file.
e.g., (Efla "data. 1 isp") -> [12 3]

If the file "data.l IUp" contain# "12 3

Another family of unitary-sequence functions computes a sequence of values according to Some formula.

Erangefirs last &optional (step-size 1)
Creates a sequence of integers by counting from first to last by the positive increment step-size.
e.g.. (range 4 8 2)>4 5 8]

sequence object
7 Generates an infinite sequence all of whose elements are object.

e.g.. (Gseqiiance 'A) a) [AAA ... J

The most common kind of sequenceunilarj, func-tion takes in a sequence and combines the elements in it
together into an aggregate data structure.

| ... .. I .. .. lil l * ll..l .. . . . . . . ., l l m d d
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RI s t sequence
CONSci thie non-empty values in a scqucncc into a list
e,.,. (Rl ist [12 2.33) 0 (12 3)

Rvoctor vet'or sequeie &optional (firtl0) (lost (I- (array-length vetor)))
Stores the non-empty values in a sequcnce into successive %lots of a one dimensional array.
e.g.. (Rvoctor <ASB C D> (12 2-. 33) a) <1 23 D)

R I lIe fik- namne sequence
Writes the non-empty values in a sequence into the indicated fie.
e.g.. (RflIlea"data. I Isp" [ 12-.33) -> T

"<c r> I(cr>2 (cr>3 11I1s pri nted In "data.lItUp"

Another kind of sequenc'e~unitary function computes some summary value based on the values in the
sequence.

R aum sequence-of- integers
Computes the sum of the non-empty integer values in a sequence.
e.g.. (Rsum[12 2.33) 0>5

Rcount sequence
Counts the number of non-empty items in a sequence.
eg., (Rcount [A B_. CQ) a> 3

RI #at sequence Uptlonal (drfault tOL)
Returns the list non-empty clement (if any) of the sequence as Its valuc, otherwise retuns default.
e.g.. (Rl ast (A B C -3 ) 0 C

Xequence~sequencc fuinctions take ini a ecquenc of values and compute some related sequence. Theytend
2 to be much more idiosyncratic than other kinds df sequence functions and only one is predefined. The next
* section describes, among other things., the mechanisms which ame used to create user defined
* sequencwseMquence functions.

Fges* scqvnnqf-nuudw',f tn*l (liit 0

Selects the non-empty elements of a sequence of integemgreatcr than limit.
e.g.. (Fgrester [12 -..3] 2) -> E___33

The programs below give a number of examples of loops built up out of the sequence functions described
* above. COPY-LI ST copies a l6st by enumerat the items in die list and then CONSing them up into a new list.
* ~LAST enumerates all of the sublissm ist and Owen rturnsfth last owi. StIR-FIRST-N adds up, the first N

(derfun copy-list (list)
(Rllst (Eliot list)))

(defun last (list) C.

(derun sum-first-n (a) C
(Raum (Erange I n)))
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FILE-LENGT4 computes the number of records in a file by enumerating them and (lien counting the items
in this scquence. DUMP-VECTOR prints the elements of a vector into a file. ZERO-VECIOR initialies a vector
by setting tie elements to )zero. It uses GSEQUENCE in order to generate a sequcncc of 'cros to use.

* :(defun file-length (file-name)
(Rcount (Efile file-name)))

(defun dump-vector (file-name vector)
(Rftile file-name (Evector vector)))

(defun zero-vector (vector)
(Rvector vector (Gsequence 0)))

Meta Sequence Functions
In addition to predcfined sequence functions, the LETS macro package supports sevcral nreta sequence

functions which make it casy for the user to create new sequence functions. 'Ilie basic action of a ineta
sequence function is to take an ordinary function and convert it into a function on sequences. Each meta
sequence finction builds a particular kind of sequence function.

'Ihe most basic meta sequence finction is (MAPS fu'tion sequence...). MAPS is a gencra lization of the
Lisp function MAP and is the principal method for creating user specified sequence-,sequcnce functions. It
takes function and Converts it into a sequence function which takes in the sequence inputs and creates a
sequence output. 'Thc number of sequences provided must be compatible with the number of' arguments
required by function. The nth clement of the output sequence is computed by applying fJiwtion to the nth
elements of the input sequences. However, if the nth element of any of the input sequences is empty then

function is not applied and the nth clement of the output is empty. Note that the length or the output
sequence is the same as the length of the shortest input sequence. lhe Jiun.tion parameter can be either a
quoted function name. or a quoted LAMBDA expression (or a macro that expands into either one). For
example, the program PAIRWISE-MAX takes in two lists and creates a list where each clement is the maximum
of the corresponding elements in the two input lists. The program SQUARE-LIST creates a list of the squares
of the items in a list.

(defun pairwise-max (listl list2)
(Rlist (maps #'max (Elist listi) (Elist lst2))))

(defun square-list (list)
(Rlist (maps #'(lambda (x) (o x x)) (Elitt list))))

The program TIMES-N multiplies every element in a list by a parameter N. The point of this cxample is
that the functional argument to MAPS (and the functional arguments to the other meta sequence functions
described below) can refer to any number of free variables. These free variables do not have to be declared

" special because the LETS macro package renders the loop cntirely.as inline code.

*: (defun times-n (list n)
An,(Rltst (maps #'(lambda (x) (* x n)) (Elist list))))

An extended form of MAPS is the meta sequence function (SCANS fimclion init sequence...). 'Ibis creates a
sequence function with an internal state variable. The input function must be a finction of n + 1 arguments

r ".,. where n is the number of sequences supplied. 'he elements of the output are the successive values of the
state not including its initial (unitary) value init. The nth value of the state is computed by calling. fnction
with the prior value of the state as its first argument and the nth elements of the input as its remaining
arguments. However, if the nth element of aniy or the input sequences is empty then funwtion is not applied,

"i p
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the state is not changed, and the nth clement of the output is empty. As with MAPS, the length of the output

sequence is the same as the length of the shortest input sequence. SCANS is useful for creating a sequence

function corresponding to a recurrence relation. For example. the program SQUARES computes a list of the
first N squares without doing any multiplication by taking advantage of fact that n2 . (n-1) 2 2n-1.

(defun squares (n)
(Rlist (scanS V(lambds (n-I-squared n) ( n-I-squared n n -1))

0 (Erangoe 1 n))))

The meta sequence function (FILTERSfuncion sequence...) is used to create sequence functions like
FGREATER which select a subsequence of a .sequence. 'lhe elements of the output sequence are computed as
follows. I f the result of applying function to the nth clements of the input sequences is non-N IL then the nth

element of thefirst input is used as the nth clement of the output; othervise the nth output clement is empty.
As with MAPS. if the nth clement of any of the input .quences is empty.then function is not applied and the
nth element of the output is empty.

As an example, consider the function SUM-POSITIVE-FILTER. It uses the mete sequence function
FILTERS instead of the sequence function FGREATER. The function REMQ takes in a list and CONSes up a new
list which is the same except that all instances of a given item are removed. It uses a filter to select which list
elements to keep.

(defun sum-postive-filter (vectoer)
(Rsum (filterS #'plusp (Evector vector))))

(defun remq (item list)
(Rllst (filterS #'(lambda (x) (not (eq x item))) (Elist list))))

User specified sequence~unilary functions can be created by using the meta sequence function
(REDUCES function init sequence...). This creates a sequence function with an internal state variable. The -
state is initialized to thc (unitary) value "init. The nith value of the state is computed by calling function with
the prior value of the state as its first argument and the nth elements of the inputs as its remaining arguments.
However, if the nth element of any of the input sequences is empty then function is not applied and the state
is not changed. When the input sequences are exhausted, the final value of the state variable is returned as
the (unitary) result. If there are no non-empty elements in the input sequences then the value init will be
returned. lhe meta sequence fuctkins REDUCES and SCANS are very closely related. The expression
(REDUCES funclion ini sequence) is the same as (RLAST (SCANS finction inil sequence) inil).

As examples, consider the following two functions. SUN-POSITIVE-REDUCER uses REDUCES instead of a
call on RSUM. MAKE-SET takes in a list possibly containing duplicate elements and creates a list without any
duplicates which contains the same elements. The key problem is removing duplicates. To do this. the
function uses a reducer which adds the current element into the list being created only if it is not a member of
the list already.

.

r r.. .. " " " " -' ":" ' ' ' " " '-' '" " "''-" "'" -' " ".. . . .l.. . . . . . . .-.. . . .. .... . . . . . .
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< -'." (defun sum-posltlvo-redurer (vector)

(reduceS #'+ 0 (Fgreater (Evector vector))))

(defun make-set (list)
(reduceS #'(lambda (state item)

(cond ((member item state) state)
(T (cons item state))))

nil
(Elist list)))

The most basic way to create a unilar,*sequencr function is to use tie meta sequence function
(GE NERAT ESjunction inil). "he sequence function produced creates a sequcnce of elements where the

(unitary) value init is the first clement and where each successive clement is computed from the prior element

by evaluating Jiunction with the prior element as its argument. Note that the output sequence is infinite in
extent. 'i he ncxt two meta sequencc functions can be used to create finite sequences.

A loop expression which contains only a generator will never terminate because it operates on an infinite
sequence. Itowever, if a loop expression is working on %everal sequences some of which are finite and some
of which are not. it will terminate as soon as the slhortest finite sequence has been exhausted. This is discussed

further in the .ection (in termination below.
Generator, are typically used in loop expressions in conjunction with finite sequences of unknown length.

For example, the. program DIGITS-TO-NUMBER takes in a list of one digit numbers and computes the
corresponding integer (e.g., '(1 2 3) becomes 123). 'The loop expression works with two basic sequences.
It enumerates the digits in the list in reverse order (i.e., least significant digit first). It also creates an
unbounded sequence of scale factors consisting of the successive powers of ten. 'fhe result is computed by
summing up the product of eacl digit with its corresponding scale factor. ')le loop terminates when tedigits
run out.

(defun digits-to-number (digit-list)
(Rsum (mat s #'* (El1st (reverse digit-list))

(generateS #'(lambda (x) (* x 10)) 1))))

Another example is the program F ILL-VECTOR which takes in a list and uses it to initialize the elements of

a vector. If there are more elements in the list than in the vector, the extra list elements are ignored. On the
other hand, if there arc more elements in the vector, the last clement of the list is used to fill out all of the
remaining elements of the vector.

(defun fill-vector (vector list)
(Rvector vector (mapS #'car (generateS #'(lambda (x) (or (cdr x) x)) list))))

Note that it is the size of the vector which controls the computation. not the length of the list. To do this
conveniently, a generator is created which generates the successive sublists of the list, but which continues to
generate the lisrsublist indelinitely once it has been reached. The function CAR is MAPSed over the generated

sequence in order to get the desired list elements. 'Thes elements arc then stored in the vector. RVECTOR

contains a termination which stops the loop when the vector has been filled up.
The meta mequence function (TRUNCATESfunction sequence...) is used to create sequence functions

which take in potentially infinite sequences and return sequences which have been truncated to finite length.
Thcfunction i.rgument is applied to successive groups of corresponding elements of the input sequences. 17he

"-' output sequence is composed of the elements of the first input sequenc up to but not including the first
eletnentcorre-ponding to a non-NIL evaluation offunc'lion. r -itht"r ..,er meta sequence functions ifany

of the nth cleinents of the input sequences are empty.then fJun ' .. is not applied and the nth outpt clement
is empty. Note that the output sequence is typically shorter than any of the input sequences, and can be of
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length zcro.whcirte meirrasrsndinteIietinC t
* ~Consider the following two examples wihaedesmasprgrm p.eetdi h atscinecp

that they use explicit generators and truncators SUM- F I RST -N-TRUNCATOR generates an infiniteNeqncc of
integers and (ruricatcs it after N. )bhc resulting sequence is then summed. LAST- TRUNCATOR generates the
-accessive CDRs of' a list and truncates this when NIL is reached. T'he la.t sublist is returned.

(defun sum-1'irst-n-truncator (n)
(Rsuui (truncateS #'(lambda (x) ()x n)) (generateS #'1+ 1))))

(defun last-truncator (list)
(Olast (truncateS #f'null (generateS #'cdr list))))

iruncators arc it great deal like filters in that they take in a sequence and return a restricted sequene.
H-owever. they differ in one very important way -- they cause the loop to terminate. l-vcn when a filter selects
only a finite number or elements out of an infinite sequence. it never causes dhe loopi Lo terminate. For
examiple. the program SUM-F IRST-N-BUGGY will never tenminate even though the correct numbers have been
sciccted. Note that it is not in general possible to detect when it filter has reached a point where no mnore
elements of the input sequence will satisfy the filter test.

(defun sum-first-n-buggy (n)
(Rsum (filterS #'(lambda (x) (not () x n))) (generateS 011+ 1))))

Thbe meta sequence function (ENUMERAT ESitruncale-funclioi' generair-funwiion ini) is an abbreviation for
the common combination (TRUNCATES Iruntalefif -f GNRAE e u'rifnctioi m)). Io exampe
the two functions above could be written more compactly as follows:

(defun sum-first-n-enumerator (n)
(Rsum (enumerateS C(laftbda (K) (x n)) #'1+ 1)))

(defun last-enumerator (list)
(Riast (enumerateS #f'null #'cdr list)))

The meta sequence functions are an essential part of the expressional loop notation because they provide a
convenientnmehanism wh' .iy the user can create additional operations on sequences.

LUtS
In an ordinary expression, if you want to usC the value of a subexpression in two places, you have to bind

this value to a vairiable. The prototypical way tooothis in Lisp is with the macro LET. Thbe macro LETS flls
the identical role in sequence expressions. In the absence of side-effects the only effect of using LET or LETS,
rather than merely duplicating the subexpremsion, is increased efficiency due to executing the %ubexpression

* .~ only once and a potential gain in the clarity of the expression.
''emacro LETS is analogous to destructuring LET**. It has a list of bound variable value pairs which are

executed sequentially so that you can use a variable in the comiputation of' the value to be bound to a later
variable. Instead of a single variabhle, a tree of variables can be used t~ specify destructuring. Alternately. the
value can be omitted in which case it is assumed that there is no initial value at all. In this case the variable
must be set before it can be read. These three cases are illustrated in the example below.

(letS ((vl valuiel) ((v2 03) voilue2) v4)
.buy)

Inside the body of a LETS you can use the form (SETO variable value) in order to assign at sequence value
to it si.quence %,triable. 11he itliti3lia'.ing valucs are haiidled as if they were sequentially assig~ned it) the bound
viiriables inside the LETS as illustraLed below. Destructuting is implemented in terms or tile appropriate CAR

. . .;7.
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d CDR operations.

(lets (vt x v2 v3 v4)
(setq vi valuel)
(setq x value2)
(setq v2 (maps #'car x))
(setq v3 (mapS #'cadr x))
* body)

FIach initializing value must be a sequence. LETS cannot be used to bind a variable to a unitary value.

owever, using GSEQUENCE, you can bind a sequence variable to an infinite sequence of a unitary value,
ich will usually be sufficient.)
'lhe macro LETS contains a body which consists of one or more loop expressions. These expressions can-

er to the s quences bound to the sequence variables, and can result in either sequence or unitary values.
e value of the last frni must be unitary and is returned as the result of the LETS as a whole. (This and

ne additional aspects of LETS stem from the element at a time meuphor and will not be (liscussed in detail
til thc next part of the paper.)

As a simple example, DIGITS-TO-NUMBER could be rewritten as shown below. Two squencc variables

used to make the loop more readable.

(defun diglts-to-number-letS (digit-list)
(lets ((digits (list (reverse digit-list)))

(scales (generates #'(lambda (x) (. x 10)) 1)))
(Rsum (MepS 9. digits scales))))

Since each sequence variable is only used once in DIGITS-TO-NUMBER-LETS the function is
orithmically identical to the earlier version of this function which did not use variables. A sequence

iable can of course be rc-erenced more than once. '"lhis will not cause the sequence to bc computed more

n once. As a result, SQUARE-LIST-LETS below is more efficient than SQUARE-LIST-REDUNDANT.

(defun square-list-letS (list)
(lets ((integers (flist list))) I
(Rlist (maps #'. integers Integers))))

(defun square-list-redundant (list)
(Rlist (maps N's (Elist list) (Elist list))))

The explicit use of SETO in a LETS is illustrated in the program DIGITS-TO-NUMBER-SETQS. The example
ws that you can make repetitive assignments redefining the value of a sequence variable just as you can in p
ordinary LET. The program first enumerates the digits. It then multiplies each one by the appropriate

le factor and then sums the resulting sequence. It is important to note that you cannot use anything other

In SETQ (or, as discussed below, MULTIPLE-VALUE) in order to assign to a sequence variable. In particular

cannot use SETF or any other macro even if it expands into a SETQ.

(defun digits-to-number-setq (digits)
(lets (integers)

(setq integers (Elist (reverse digits)))
(setq integers (o integers (generates #'(lambda (x) (s x 10)) 1)))
(Rsum integers)))

SETQs and other forms can be used to assign to any number of free (unitary) variables in the body of a

S. This is often useful for passing information out of a loop.

• ' - " ' - ' "-" .' . ' ". i . .



'l'hc Fxpressional Metaphor - 10- Waters r

DefunS
'lic mecta sequence functions make it possible for a user to create his own sequence operations. However,

these operations are only literals and must he recreated each time they arc to be used. '111e macro DE FUNS
makes it possible for a user to created named sequence functions which he can then use in loop expressions.
These sequence functions are actually macros which are compiled inline by the LETS Iylacro package.
I lowever, in the context of the expressional notation, they are intended to be thought of as functions just like
any other function.

(defunS ntanic paraineterlistbody)

'he macro DEFUNS is exactly analogous to DEFUN. It has two basic parts: a parameter list and a body. The
p,tramcter list is a list of variable names and supports fiur keywords: &UN4ITARY. &SEQUENCE, &OPTIONAL,
and &AUX. Fach of'the keywords is stck'* and specifies the type of all of the parameters whkh f ollow it until
another keyword changes the type. The first two keywords are used to specify whether a particular parameter
is a sequence or an ordinary unitary object. By default, the parameters are initially assumed to le unitary.
Just as in ordinary Lisp. &OPTIONAL specifies that the following parameters are optional. Also just as in
ordinary I isp. &AUX specifies that the following variables are not parameters at all. but rather just internal
values. Optional/initial values can be specifled using variable value pairs. However. unlike ordinary lisp, if
no default value is specified then no value will be supplied and the associated variable must be set before it
can be read.

"'l'c body of a DEFUNS is exactly the same as the body of a LETS except that the last finn is not required to
yield a unitary value. Note, however, that DEFUNS is completely different from LETS in that it creates a
sequence function which cin later be comlbined together with other sequence functions while LET S creates an

actual loop. 'Ilhe value of the last form, be it unitary or sequence. is returned as the value of the sequence
function being created. 'Ilie following examples use DEFUNS in order to dcine a number of the standard
sequcnce functions described above. Note that ELIST returns a sequence while RSUM returns a unitary value.

(defunS Elist (list) r
(mapS #'car (enumerateS #'null #'cdr list)))

(defunS Rsum (&sequence num)
(reduceS #'+ 0 num))

'Ic following definitions illustrate the use of optional parameters. ERANGE takes an optional positive
increment which defaults to one. FGREATER takes an optional comparison limit which defaults to zero.
EVECTOR takes an optional interval in the vector which defaults to the full limits of the vector.

(defunS Erange (first last &optional (step-size 1))
(enumerateS #'(lambda (x) () x last)) #'(lambda (x) (+ x step-size)) first))

(defunS Fgreater (&sequence Integers &unitary &optional (limit 0))
(filterS #'(lambda (x) () x limit)) integers))

(defunS Evector (vector &optional (start 0) (end (1- (array-length vector))))
(mapS V(lambda (x) (are vector x)) (Erange start end)))

'[he ability for the user to conveniently define his own tamed sequence functions is a particularly
important part of the exprcssionail loop notation. It makes it possible for him to extend the notation to deal
with the particular data abstractions lie creates. A detailed example of this is given in a later scction.
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Multiple Values
All of the sequence functions presented above have had a single return value. The LETS macro package

supports multiple return values I)y supporting the standard I.ispMachine functions VALUES and MULTIPLE-
VALUE inside the body of a DEFUNS or LETS. For example, the function EPLIST takes in a discnbodied plist
and returns two values: a sequence of the property names. and a sequence of the values of those properties.
VALUES is used as the last form of the DEFUNS in order to specify that two sequences are being returned.

(detunS Eplist (plist &sequence &eux pointers)
(setq pointers (enumerateS #'null #'cddr (cdr plist)))
(values (maps #'car pointers) (maps #'cadr pointers)))

The program PLIST-TO-ALIST converts a plist into an alist where the entries in the alist are created by
CONSing together successive property value pairs. The program illustrates how MULTI PLE-VALUE can be used
in a LETS in order to access the two sequences returned by EPLIST.

(defun plist-to-alist (plist)
(lets (properties values)
(multiple-value (properties values) (Eplist plist))
(rlist (mapS #cons properties values))))

'llie function COUNT-AND-SUN illustrates the use of VALUES as the last form of a LETS in order to specify
that the loop as a whole returns multiple values.

(defun count-and-sum (list)
(lets ((Integers (El1st list)))

(values (Rcount Integers) (Rsum integers))))

(Ie Macl.isp version of LETS does not support multiple return values from loops. However, it does
support multiple return values from sequence functions such as EPL IST.)

Where the Expressional Metaphor Breaks Down
There are two situations in which loop expressions fail to be faithful to the expressional metaphor. 'he

first of these involves side-effects. If a sequence function performs side-effects which disturb the actions of
*,!. another sequence function, then the behavior of a loop expression as a whole can fail to be the composition of

the behaviors of the sequence functions when looked at separately. (A detailed example of this will be :7
discussed later on in this paper.) It should be noted that the breakdown of the expressional metaphor in this
situation is not at all surprising considering that ordinary expressions lose the property of modularity in the

-*: presence of side-effects.
*, The second place where the expressional metaphor breaks down is when questions of termination are

being considered. As mentioned above, the termination of a loop expression is controlled by the length of the
sequences in it. The loop expression terminates as soon as the shorlest sequence in it is exhausted. This is an
example of action at a distance which makes it impossible to understand the various parts of a loop expression
completely in isolation from each other.

Consider again the program DIGITS-TO-NUMBER (reproduced below). Thiere are several questions about
the sequence functions in this program which cannot be answered completely locally. For example. although
it is convenient to describe the generator as creating an infinite sequence of powers of 10, it cannot actually do
that. T"hc generator will eventually halt with an error due to arithmetic overflow unless some other sequence
function terminates the loop before then. On the other hand, in order to be sure that the ELIST will succeed
in enumerating all of the digits, one must check that no other sequence function will tenninate the loop
before the end of the list of digits is reached. lkcausc of tiese problems, you cannot just compoe an

;: .'°.. ..., .,."- : .. - .-.. . . ". -. .-, ., , , . .. - .' - . ' ..- . ... . . - . " ,, . : . .. . - . ... ' - --..- - .. . - .. , , ,. . . .
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understanding of its parts in order to understand the loop expression as a whole.

(defun digits-to-number (digit-list)
(Rsum (mapS O's (Elist (reverse digit-list))

(generateS #,(lambda (x) (o x 10)) 1))))

Iortunately, there is a middle ground with regard to the property of decompo-ability. As discussed in [161.

as long as you make no statements which depend on a specific minimum length of any sequence, any

statement which is true about a sequence runction in isolation will be true when it is composed with other

functions in a loop expression. For example. you can say that the generator creates a sequence of powers of

10 beginning with 1. However. you cannot make any statement about whether it will or will not get arithmetic

overflow in the process. Similarly, you can say that ELIST enumerates successive clcnenLs of a list starting

with the first one. You can even say that it will produce a sequence no longer than the list. I lowever, you

cannot make any claim about any minimum number of list elements which definitely will be enumerated.

Given the kind of statements you can dependably make, you can determine a great deal about a loop by

using straight composition. For example, in DIGITS-TO-NUMBER it is easy to tell that the values in the

sequence created by the generator correspond to successive powers of 10, and that the sequence created by the

ELIST correspond to successive digiL least significant digit first. In addition, it is clear that the program
multiplies each digit by the appropriate power of 10 and that these results are summed up.

In order to go beyond this and make statements about termination, you must do more global reasoning.

In this casc, there is only one basic finite sequence involved (the one created by the ELIST), and it clearly

dominates the computation. As a result, the program clearly processes all of the digits and terminates

computing the correct number.

The two step reasoning process outlined above is usually very satisfactory for the kind of straightforward

loops the expressional notation is designed to rcpresent. In particular, the global reasoning about termination
is usually not at all difficult.

..

.'..

.. . . . . ..-...
- .** . . , .
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I" - The Element at a Time Metaphor
The loop notation being presented here supports a second (element at a time) computational metaphor in

addition to the expressional metaphor. 'he expressional metaphor is based on the idea that a scquence is a
logical unit which is created in its entirety by one sequence function and then consumed by another sequence
function. "Ibc element at a time metaphor is based on the idea that the computation involving all of the
sequences in a single loop proceeds in parallel and that: the loop expression is essentially describing what
happens on a typical step in this process, For example, consider the following version of the program
01GITS-TO-tUMBER.

(derun digits-to-number-elements (digit-list)
(letS ((digit (Elist (reverse digit-list)))

(scale (generateS #'(lambda (x) (s x 10)) 1)))
(Rsm (mapS #'. digit scale))))

In this program, the typical value of DIGIT is an element of the sequence created by enumerating the
input DIGIT-LIST. 'the typical value of SCALE is a power of ten taken from the sequence created by the
generator. On each cycle of the computation, the value of DIGIT is multiplied by the corresponding value of
SCALE. The final result is the sum of these products.

If you compare DIGITS-TO-NUMBER-ELEMENTS with the program DIGITS-TO-NUMBER-LETS above you
will se that die only actual differencd is. that the names of the sequence variables are singular instead of
plural. The only important difference is in the way they are described. 'he element at a time description is
very natural for some parts of the computation (e.g.. the multiplication of corresponding values of DIGIT and
SCALE). Other parts of the computation (e.g.. the RSUM) only really make sense from the point of view of the
expressional metaphor.

The element at a time metaphor is intimately tied up with the way loop expressions arc actually compiled.
The LETS macro package converts each loop expression into an ordinary iterative loop. This loop processes
the sequence% in the .expression one element at a time with each slot in the sequences corresponding to one

cycle of the loop which is produced. The correspondence between the lop produced and the clement at a
time metaphor is obvious. However, it should be noted that while the compilation process exists purely as a

matter of effticncy, the element at a time metaphor is highlighted in this discussion because it is the
motivation for a number of userut facilities supported by the expressional notation.

The two metaphors are really very separate ideas. One could easily decide to support just one of them.
For example, the language API. supports much of the expressional metaphor and relatively little of the
clement at a time metaphor, while the language Hibol does the opposite. Experience with the expressional
lotation suggests that it is beneficial to blend these two ideas together. An interesting aspect of this is the fact

that the restricions on the expressionaJ metaphor which are needed in order to clearly support the element at
a time metaphor are essentially the samc restrictions which are required in order to guarantee efficient
compilation.

I

;.- . .
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Implicit maps
ThIbciration of srquence~sequence functions with M4APS is so common Wht a syntactic sugaring has been

introduced to make this easier. Whenever an ordinary unitary L~isp finmvion is applied to sequences. it is
inrplicitly MAPSed over those siquenaes. For examiple, the fo~llowing versionl of DIGITS- TO-NUMBER is

* eqUiVAlt to the one above.

(defun diglts-to-number-luplicit (digit-list)
(lets ((digit (Elist (reverse digit-list)))

(scale (generates #'(lambda (x) (e x 10)) 1)))
(Rsum (s digit scale))))

T'he function * in the last line of the program is applied to two sequence variables and its output is used as
a sequencc by the RSUM. From the point of view of the expressional metaphor this is a type conflict and does
not make a jrcat deal of senise. However, as a statement of what happens to the typical elements of the
sequences in the variables DIGIT and SCALE (i.e.. that they are multiplied) it make% a lot of sense. Implicit
introduction of MAPS is provided in order to support this viewpoint.

APisintrodluced implicitly in situations more comnplex than the one above. A ful st tmn ofte

process is as follows: If a unitary expression appears in an envirr'nmeni where a sequence value is expected then
* the entire expression down, to. but not including an*', components which create sequences is separated out as a

LAMBDA expression mnd MAPSed. 'Ibis is demionstrated by the foillowing three pairs of equivalent loop
expressions. 'Ibe sccond pair ilustrattes the fact that an expression might not refer to any sequence values at
all. In this c..e it will be converted to a LAMBDIA expression of no arguments and still be, MAPscd. (Note that.

* as is. this particular example would attempt to create an infinite list.) The third pair illustrates that implicit
* ~MAPS introduction is applied to expressions involving fexprs and macros in exactly the same way as it is to *>

other cxpreskm)s.

(Rlist (1+ (o (Eliat listi) (4 2 (Elist lstZ)))))
same as: (Rlist (maps #'(lambda (x y) (1+ (s x (+ 2 f)

(Elist ltstl)
(El 1st lst2)))

(Rllst (acornsa T))
same as: (Rlist (maps U'(lambda () (acorns 1))))

(Rlist (let ((z (Elist list))) %
(push (a z z) stack)
z))

same as: (Rlist (maps 0'(lambda (x)
(let ((z X))
(push (0 2 2) stack)

(Elist list)))

A potential aspect of Mhe expressional metaphor is sacrificed in order to support implicit MAPS
introduction, If nothing else were said you would expect that sequences were real data objects and that they
could be passed between non-seqluence functions and operated om by ordinary unitary functions like CONS.
However. this is not possible because all -such expressionis are converte.d by implicit MAPS introduction into
sequence functions. As a result, a sequence can never be operated on by anything other than a sequence
function and".euences are alwaystcontined completely inside sequece expressions. Its~hould be noted that
this is a restriction which has to be imposed in any case in order to insuire efricit compilation. If sequences
were aflowed to ewcape fron fth conrynes of sequence cxpressitins then there would himc it) be an cxplicit

* representation for them, and it would not be possible to efficienitly compile any loop which communicated
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-equences from (or to) the surrounding environmcnL As a result, nothing of great imort is actually being
'acrificed in order to support implicit NAPS introduction.

. Filters and Expressions Involving Multiple Sequences

In order to support the element at a time metaphor every sequence function (including those created by
the mcut sequence functions) is guaranteed to have the property of regislration. As discussed above, a

sequence is an ordered %,;ries of slots containing values. 'he registration property requires that the nth

element in the sequence produced by a sequence function must be computcd from the nth elements of the
input sequences to that function. The computation can also involve state variables internal to the sequence
function, but it cannot refer to any other elements in the inputs. The fact that the registration property is

universally satisfied insures that it makes sense to talk about the interaction between the nth values in all of
the sequences in a loop expression -is typical because they are computed from each other.

'iIhe only sequence functions where there is any logical difficulty in satisfying the registration property are
filters. It would be perfectly rea.soable to say that a filter takes in a sequence and produces a shorter
sequence containing only selected elements of the input sequence. Irom the point of view of the expressional
metaphor there is nothing wrong with this definition, and there would be no difficulty in understanding a
program like SUN-POSIT IVE-EXPRESSIONAL based on this definition.

However. if filters produced shortened sequences, they would not satisfy the registration property. In
order t) satisfy this property, a filter is defined as producing a sequence which has exactly the same number of
slots as its input with the selectivity of the filter encoded in the fact that some of the output slots are empty.

'lhe selected values remain in the same slots as in the input sequence. In order to make this work, loop
low ..expressions are defined as simply not operating on empty slots. 'lhis can be seen in the definitions of the

various sequence functions and meta sequence functions presented above. "lhc following general statement
can be made: A given loop subexpression is only executed on hose cycles of the loop when values are available
for all of the sequences it refers to.

In order to appreciate the full impact of the definition of how filters operate, one must consider loop
expressions involving scveral sequences. Consider the program LIST- EVEN-SQUARES. It takes in a list and
returns a list. The output list contains an entry corrsponding to each even number in the input. Each entry
consists of the number followed by its square. For example when passed the argument (1 2 3 4) the
program will produce the output ((2 4) (4 16)).

(defun list-even-squares (list)
(lets ((Integers (Elist list)))
(Rlist (list (filters U'evenp integers)

(i Integers integers)))))

In the program, the function LIST is implicitly NAPSd over two sequence The first is generated by
enumerating the elements in the input and selecting the even elements (e.g.. [- 2 _ 43). 'Ie second is
generated by squaring all of the elements in the list (e.g., [1 4 2 16]). The registration between the two

sequences is maintained by the fact that the missing elements in the filtered sequence are represented as
empty slots. 'he function LIST is only executed when values are available in both sequences i.e., only for
even elements of the list. The output of the implicit MAPS is a sequence which has values in it corresponding

to the times when LIST was executed (c.g., _(24)-(4 16)1). When RLiST reduces this sequence to a list it
ignores these empty slots.

'Ie registration property makes loop expressions easy to understand and compile: however, it is
significantly restrictive. ibe key limitation is that there are a number of quite hgical operations on sequences
which cannot be supported. In particular. operations which disturb the ordering of the slots arc prohibited.

..........
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For example, merging sequences, concatenating sequences. changing the order in a qlUenCe (e.g.. rcversing
it). etc. Such complex operations are not supported because the overhead a.sciated with supporting them is
no warranted by the rather infrequent need for them. When they are needed, other loop reprcsentations
should be used.

Termination
As discussed above, termination presenti problems from the point of view of the expressional metaphor.

A loop expression is defined to terminate as soo(n as the shortest sequence in the expression is exhausted. i'lis
definition really only makes sense from the point of view of the clement at a time metaphor. From the point
of view or the latter metaphor, a loop expression is executed by computing all of the sequences in it in parallel
an clement at a time. '[be loop stops as soon as any sequence runs out of elements.

An interesting aspect of termination is the way it interacts with the registration property. Suppose, for
- example, that filters produced sequences of reduced length as their output. In this situation, a filter might

well produce as the third and rinal element of its output the sixth element of its input. The definition of
termination above would require that the loop stop after three cycles. However. this is a contradiction
because the loop must run for at least six cycles in order to generate the sixth input to the filter so that the
filter can produce its third output.

Note that all of the sequence functions and meta sequence functions (with the exception of TRUNCATES)
are carefully restricted so that the lengths of their output sequences (if any) are exactly the same as the
minimum of the lengths of their input sequences (if any). This is done so that truncators will be the only
sequence functions which ever trigger termination. As a result, reasoning about termination can frcus on the
truncators in a loop.

At-start, At-end, & At-unwind
In addition to element at a time computation on sequences, many sequence functions specify initializing

computation which is performed beimre the lo)p 'as a whole gets underway and/or cpilog computation which
occurs after the main body of the loop las terminated. Three additional meta sequence functions are
provided which make it possible for users to specify computation to be performed at these times.

The ecta sequence function (AT-END function arg...) specifies thatjicition should be executed after the
loop terminates. All of the args and any free variables referenced by function must hold unitary values. The
value produced by applying function to args is returned as the unitary value of the form as a whole. As an
example, consider the following dcfinitionof RLIST. A reducer is used to CONS together the items in the

.-. input sequence. After the reduction is completed, the function NREVERSE is used t) reverse the order of the
- list so that the correct result is returned.

(defunS Rlist (&sequence items)
(at-end #'nroverse (reduceS D'xcons nil items)))

The mcta sequence function (AT -UNWIND/ie . tion arg...) is just like AT-ENO except for two things. First,
it produces no result at all. It is executed for side-effect only. Second, it will be executed no matter how the
loop is terminated. 'The next section describes several situations in which unusual loop exits prevent AT -END

computation from being performed. As an example of AT-UNWIND, consider the following definition of
RFILE. A unitary auxiliary variable is used to hold the file object which is opened to receive the output. This

-7 file is clsed when the output is completed. AT-UNWIND is used because it is important to clu the file no
matter howi e luop is exited. Note that Al -END is used to specify that T should be returned is the result of

* .RFILE.

.. . . . * .- o * . oO . . *. * . .. . . . . . . •. , . . . .. . ..
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- (defunS Rtfile (name &sequence items &aux &unitary (file (open name 'out)))
(at-unwind #'(lambda () (close ftile)))
(maps #'(lambda (item)

(let (prinlevel prinlongth)
(print item ftile)))

items)
(at-end #'(lambda () T)))

TIV meta sequence function (AT-START funcuionarg...) is exactly the same as AT-END except that
function is cxecuted before the loop begins rather than after it terminates. h'lie initialitation of the auxiliary
variable FILE in RFILE is an implicit exampic of AT-START computation. It could be made explicit as
follows:

(defunS Rflle-explicit-at-start (name &sequence items &aux &unitary file)
(at-start C(lambda.() (setq file (open name 'out))))
(at-unwind '(lambda () (close file)))
(maps #'(lambda (item)

(let (prinlevel prinlangth)
(print item file)))

Items)"' (at-end #'(lambda () T)))

cle examples above illustrate the most important use of AT-START. AT-END. and AT-UNWIND. They are
used to include initializing and epilog coniputation as part of an individual sequence function. This extends
the range ofloop computation fragments which can be expressed as sequence functions. For cxample, RFILE
would be conceptually much less useful if it did not encapsulate the actions of opening and closing the file
into the same unit with printing out the objcm

Thc program PRINT-LIST-SUN illustrates the use of AT-START and AT-END inside of a LETS. The first
line in the body of the LETS is executed only once at the start of the loop and prints a heading. '111e last line is
executed only once at the end and prints the sum. lhc middle two lines arc executed on every cycle of the

* kop and print out the integers in the list separated by spaces,

(defun print-list-sum (list)
(lots ((x (Elist list)))

(at-start #'(lambda () (format T "-%Integers: ")))
(maps #'(lambda (z) (format T "-D" z)) X)
(maps #'(lambda () (format T
(at-end V'(lambda (z) (format T "-%Thelr Sum: -0-%" z)) (Raum x))))

The output produced by (print-list-sum '(1 2 3 4))

Integers: 1 2 3 4
Their Sum: 10

*Jt"

.
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In order to make it easier to write loops like the one above, the rule for implicit MAPS introduction is
extended by saying that every top level unitary expression in a LETS or DEFUNS body is MAPScd if possible.
"'le only time it is not possible is if (like the last line of the LETS below) the expression refers to a value which

is produced by a reducer and therefore not available until after the loop is comiplcted. In this case. AT-END is
inliCiLly introduced. Note that neither AT-START nor AT-UNWIND is ever implicitly introduced.

(defun prlnt-llst-sum-impllcit (list)
(format T "-%Integers: ")
(lets ((x (Elist list)))

(format T "-D" x)
(format T " ")
(format T "-%Their Sum: -D-%" (Rsum x))))

Looking at the program PRINT-L IST-SUN- IMPLICIT above (which is exactly equivalent to PRINT-LIST-
SUM) everal points should be considered. he computation to be performed AT-START is simply placed
outside and before the LETS. lhe second line in the LETS is implicitly MAPSed even though it refers to no
sequence values at all. The third line is implicitly AT-ENDed because it refers to the output of a reducer. It
should be noted that it is almost never necessary to actually write an explicit MAPS. AT-START, or AT-END.

Done
In addition to using the meta sequence function TRUNCATES to limit the length of a sequence, a loop can

also be terminated by executing the special fi)rm DONE. Cor.aider the program SUM-I NIT IAL. It takes in a list
and adds up any initial group of numbers (e.g.. (SUM-INITIAL (1 2 A 4)) returns 3). The program
works by enumerating the elements in the list and summing them up. but terminating the loop as soon as a
non-number is encountered. 'he fi)rm (DOME) causes the immediately enclosing loop to terminate normally
-- any AT-END loop computation which has been specified is performed, and the return value which is
specified by the last line is returned (heie the sum). Note that DONE only makes sense fn)m the point of view
of the element at a time metaphor, it does not fit into the expressional metaphor at all.

(defun sum-initial (list)
(lets ((x (Eliat list)))

(cond ((not (numberp x)) (done)))
(Rsum X)))

DOME can al.) be called with one or more arguments. In this case the loop is immediately terminated and
the specified values are returned. When DONE is used in this! way, it overrides the outputm specified in the last
line of the LETS and any AT-END computations are not performed. An example of this use of DONE is shown
in the program FIND-POSITIVE which returns the first positive number in a list.

(defun find-positive (list)
(lets ((X (Elist list)))

(cond ((plusp x) (done x)))))

The use of DONE is also illustrated by the following sequence functions. The scquence function ROR
computes the OR of a sequence in ,he obvious way by successively ORing each value into a state variable. The
first non-NIL value encountered is returned. 'lle sequence function ROR-FAST also returns the first non-NIL
value encountered: however, it causes the loop as a whole to terminate as soon as this value is found. Note
the way the DONE overrides the NIL which is returned AT-END if no non-NIL items are found.F-
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(defunS Ror (&sequence item)
* (reduces #'or nil item))

(defunS Ror-fast (&sequence item)
* ., (cond (item (done item)))

(at-end #'(lambda () nil)))

In general, ROR- FAST is more efficient than ROR: however, when you use it you must consider thc cf~ect
that it will have on the rest or the loop it is used in. For cxamnpc, because its operation is pecmptorily
tcnininated by the ROR-FAST, the program PRINT- LIST-OR- BUGGY neither prints out all of the elements in
the list, nor print% out the summary line AT-END. In order to opcratc as intended. it needs to usc ROR instead
of ROR -FAST.

(defun print-list-or-buggy (list)
(format T "-V.Elements: "
(lets ((X (El 1st list)))

(format T "-A " x)
(format T "-%Their Or: -D-%" (Ror-fast x))))

'Meh output prod~uced by (print-li1st-or-buggy '(NIL A NIL 6))
Elements: NIL A

It should be noted that you can cause thc premature termination of a loop in other ways which are outside

the scope of the LETS macro package. For example, you can wrap the loop in a PROG and then do a RETURN
* or GO from inside the loop to outside the loiop. (Note that the looip expression itself is implemenited by means

of a PROG. In the lispMachine version (but not the Maclisp version). this PROG is namned T in order to reduce
interference with user specified RE TURN&.) Similarly. you can do a THROW from insidc the loop to some CATCH

:4outside the loop. An important aspect of thewe kinds or exits is that they do not cause normal termination of
the loop. No AT- END loop computationi will be. run, and the rcturrn value is directly specified by the RETURN
or THROW.

Restar
It is ixcasionally convenient to be able to restart a loop at the beginning. The function RESTART

reinitializes the immediately enclosing loop and causes it to start execution again from the beginning. 'lle use
of this function is illustrated in by the program RELAX.

(defun relax (graph function)
(lots (

(cond ((Nor (funcall function (Egraph graph))) (restart)))))

The program RE LAX takes in a graph and a function. the function is assumed to take in a node of the
graph and perform some computation which may or may not result in side-efrects which alter the node. If it
alters the node then the function returns T, otherwise it returns NIL. RELAX repetitively applies the function
to the nodes of the graph until the graph reaches a quiescent state where the nodes are no longer changing. A
typical example of the way RELAX could be used would be to propagate some information through the graph.

Ii program works through multiple passes over the graph. It is assumed that the sequence function
EGRAPH enumerates the nodes of the graph, In each pass., the function is applied to all of the nodes in the
graph. 'ihe program computes, the OR of the result,. of all of these ffunction ap~plications. If any of them is T
then the loop is restiated in order to begin another pass over the graph.
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LetS
Fach LETS form delineates the exact extent ofa loop. All of the sequence expre,'ssions in it (including any

expressions specifying values fit' the sequence variables being bound) are combined together into a single
loop which is separate from all other loops. The requirement that the output of a LETS he a unitary value

* results from the fact that the each LETS is compiled into a scparate loop and therefore cannot be allowed to
return a sequence into the surrounding environmenL

LETS is defined to be a rigid boundary in order tw better support the element at a time metaphor. lach
LETS delineates a set of sequences which will be processed in parallel. 'This is important for clarifying
concepts such as AT-START and AT-END. In addition, as will be discussed in detail below, it is even more
important when considering side-effects (.such as input/output) and nested loops.

It is typical for LETS to be used for loops which have a very strong element at a time flavor. In general,
heavy use is made of implicit NAPS and AT-END in order to express these loops. 'lhe program INVENTORY-
REPORT below shows a typical example of using LETS for this kind of kop. 'The program reads in a file of
inventory records and prints out a report. Fach record is a list of four fields: the name of the inventory item,
the quantity on hand. the minimum acceptable quantity on hand and the unit price. For each item the report
prints out its name. how many are on hand, and the valuation of these, items based on the specified price. The
last line of the output reports the total valuation of all of the items. In addition to the above, the report prints
out a notification in front of each item which is understocked indicating how many should be ordered.

Sample Inventory File Contents
("Widget" S. 8. 20.5)
("Frob" 2. 9. 9.88)

("Thlngy" 312. 40. 19.65)
("Dingus" 0. 20. 6.21) Nor,
("Whatsit" 3. 7. 5.67)

Resulting Printout
Inventory Report

Order? Name On Hand Valuation
Widget 8 $164.00

Order: 7 Frob 2 $10.30
Thingy 312 $6130.60

Order: 20 Dingus 0 50.00
Order: 4 Whatsit 3 $17.01

Total Valuation: $6331.17 V

I A)king at the loop in thc program. notc the use of destructuring and sequential assignment in the bound
variable value pairs. In the first line or die LETS, the sequence variable NA4E is bound to a sequence of'the
first field of each record, the variable QUAIITITY is bound to a sequence of the second field of each record. etc.
ihe variable VALUATION is bound to a sequence of products of PRICE and QUANTITY.

p

...
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• , (defun inventory-report ()
(with-open-file (report "inventory.report" ':out)
(format report "-10T Inventory Report-2%")
(format report "Order? Name On Hand Valuation-%")
(lets (((name quantity minimum price) (Efile "inventory.data"))

(valuation (*$ price (float quantity))))
(cond ((>* quantity minimum) (format report "-lOX"))

(T (format report "Order: -3D" (- minimum quantity))))
(format report "-X-1OA-4D-2X-1O<$-$~>-%." name quantity valuation)
(format report "-%-llXTotal Valuatlon:-1O<$-$->" (Rsum$ valuatl'n)))))

'ie body of the LETS prints the main part of the actual report. The first form prints the ordering

notirications. it compares the quantity in stock with the minimum required and prints out the number to be
ordered if the quantity is less than the minimum. "lhe second fbrm prints the main information about each
inventory item. (Note that the FORMAT function is a Lisp function- for creating formiatted output. I .ikc the
Fortran construct it is modeled after, it is inscrutablc but convenient.) Iloth of the first two forms in thc body

arc implicitly MAPSed. 'lIc third formi prints out the summary line at the end of the report. It is only

executed once at the end of the Iop because it uses the unitary output of the reducer RSUMS (floating point
sum).

An important thing to note about INVENTORY-REPORT is that although the process of actually printing out
the report (i.e., opening the file, printing some initial lines, printing a group of internal lines, printing a final
line. and then closing the file) is clearly a logically identifiable loop fragment. it is not represented as a
sequence function. 'libc problem is that, unlike the simpler actions represented by R F I L E. there arc soi many
ways in which the items to be printed, and the format for printing them, can vary that there is very little
constant structure which could be captured in a sequence function. Basically, tihe only thing which is
common between different instances of this fragment is opening and closing the file which is already captured
in the fi)rm WITH-OPEN-FILE.

A key aspect of LETS is that even though the operation of actually printing the report arc not represented
as a sequence function, LETS. makes it possible for them to be conveniently expressed, ibis is done in
basically the same way that it would be done in an ordinary looping notation i.e., by distributing the parts of
the computation into places where they will be executed in the correct situations. It must be said that this
makes this particular fragment no easier to understand than it would be in an ordinary looping notation.
However, the loop as a whole is more understandable because much of the computation is represented
concisely in terms of sequence functions. ]'he ability to mix computations which are not specified as sequence
functions into a loop expression is another important capability which is facilitated by the element at a time
metaphor. The issue of the kinds of loop fragments which cannot be represented will be discussed more fully

* ,in the section on the domain of applicability of the expressional loop notation.

Side-Effects
The behavior of side-effect producing operations (such as input/output) in a loop expression can only be

understood from die point of view of the element at a time metaphor. 'Ibis is another important reason why
this metaphor is made a prominent part of the description of the notation.

The compilation process is constrained so that the order of execution in the loop produced is rigidly linked
to the lexical order of expressions in the original loop expression. As a result, it is relatively easy to predict the
consequences of side-effects as long as you bear in mind the fact that processing is occurring an element at a

time so that the sidc-effect operations are interleaved and that each one is executed many times. Consider the

program INVENTORY-REPORT above. The two main output statemenL are each executed once on each cycle

.K:
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* olidie loop. The final1 output suitcenrt is executed only 011caftcr dtie loops terminates.
Note that the requirement that cvcry unitary expression in a LETS he MAPScd if possil a nrdcdi

order to imake sidc-effects easier to understand. Onc might have said that an expression which neither uses
nor produces scquetice values should not bc MAPSed since its value cannot change (iii different cycles of the

* loop. I lowevcr, this would be missing thc fact that if it has a side-eflect (such ats olipil to a file) this effect is
* piolbahly desired on every cycle of the loop. A programmecr Call uiS AT-START in order to specify that

something should only he executed once.
Most sidc-effocts interact with the expressional notation in straightforward ways and can easily be

understood ats outlined above. However. there are somel situations where things are not so) clear.

Side-Effects and Termination
In order to understand how side-effects interact with termination, one has to be aware of exactly when

temliination will occur. For example. consider thc programn PRINT-LIST below, T[his function prints all of r
* the items in at list preceding each one with an index of its position in the list.

(defun print-list (list)
(lets ((1 (generates #'1+ 1))

(x (Elist list)))
* (format T "-%Item -D:" i) r

(format T " -A" x)))

* -The output produced by (print-list '(A 8 C)):

Item 1: A
Item Z: a
Item 3: C

*'[here is one potential pitfall which the user must be aware of. A loop is terminated imynlediately upon
*discovering that one of the sequences has been exhausted. As a result of this, unless the termination test

happened to be the first thing executed on that cycle of the loop, some things will get executed on that last
* cycle, atid others will not. In particular. all and only those expressions which lexically precede thc termnination

will be executed. For example, consider the program PRINT -LIST -BUGGY. (Note that although no sqec
varijbics irc bound, a LETS is required in this program in order to specify that the two FORMATs should be
excu.tted in a single loop instead of in two separate loops. ilie LETS also specifies that the FORMATS should be

MAPSed.)

(defun print-list-buggy (list)--
(lets (

(format 7 "-%hItem -0:" (generateS #,1+ 1))
(format T "1 -A" (Elist list))))

T1he output produced by !print-lIist-buggy '(A B C)):
Item 1: A

gItem 2: 0
Item 3: C
Item 4:

Tlhis program does not produce the same output as PR INT -LIST. 'Teproblemn is that it does not discover
that the list has heen exhausted uinuil after the First FORMAT has been executed on the last cycle of the loop.

j Note that thiis prohlem cannot be avoided by any straightforward change to the definition of LETS. You
could not sav that nothing in a cyclc will.he execuited il any termination is triggered because some of the-
COrn LItittiOf ma) he necess.arv in order to compute when to termninate. On th(e other hand, you could not say

* tl'a everything will be execuited on the cycle where terniiliation occur, bca~use typically sorne (or all) of the



ters -23. n fic Element at a 'lime Metaphor

iputation after the termination test wilt bc in error if dhe test is true.
'Ilh programmer is capabhle of exercising control over this problem because, in the loop code which is
duccd. everything is evaluated in thc order in which it appears in the original loop expression. As a result,
always possible for him to get the termiination tests to occur at the places hc wants by correctly ordering
formis in the LETS. For example, die ELIST is merely placed bcfore dhe irst FORMAT in PRINT-LIST. As
suilt, this is not really a Se~vere problem,, however, it is one to which the user mnust be sensitized.
On a deeper level, the real problem with PR INT -LIST -BUGGY is that neither it (nor for that matter PRINT -
;T) makes the logical relationship between the two FORMATS explicit. T1he correct thing to do is to group
in together into a single form ats in Ohe function PRI NT -L IST-BEST.

(derun print-list-best (list)
(lots ()
(format T "-%~Item -D: -A" (generates #'1+ 1) (Elist list))))

Side-Effects Between Sequence. Functions
As mentioned above. the expressional notation attempts to nmaintain the property of decomposability of
p expression% whenever possible. An important feature of this is that any internal state variables of a
uencc function are hidden from view and cannot be modified by SETQs, or thle like, ill a loop expression.
fortunately. side-effect producing functions such as RPLACD are capable of modifying the values of state
iables without having to actually refer to the variables themselves. If such side-effect functions are being
d. then the programmer must take care that this kind ofiproblem does not arise.
'ie problem is illustrated by the program DASH- LIST -BUGGY. Thei purpose of this program is to take in a
(e.g., (A B C)) and put it dash after each entry in it (e.g., to produce (A - B - C - )). It attempts to do
by side-effectas folow%. It enumerates each of the sublists in the original list (e.g.. [(A IlQ(C) (h C ))
splices in a dash after the first element of each sublist (e.g., producing [(A - B C) (B - C) (C ))

(defun dash-list-buggy (list)
(lets ((sublist (Esublists list)))

(rplacd sublist (cons '- (cdi' sut.t1st))))
list)

Iirticularly from the point of view of thc expressional metaphor, the above algorithm sounds very
isible; however, it doesn't work. What actually happens is that the program goes into an infinite loop
:ing in dash"s after the first item in the input list. For example. if the loop starts with thle list (A B C)

the first sublist is (A B c). Trhe RPLACO alters this sublist to (A - B C) and therefore the list itself to
- B C). So far this is all as intended. Unfortunately, an internal variable iii ESUBLISTS has a pointer
the list in order to keep track of what sublist to enumerate. The list is altered before the second sublist is
ally enumerated and as a result (- 8 C) gets enumerated as the second sublist instead of (B C).
t is possible to construct a loop expression for thii algorithnii which will work more or less as intended.
example, the program DASH-LIST I combines everything into one enumerator which enumerates the next
ist before the APLACO operation. Alternatively, DASH-LIST2 uses a modified enumerator which makes
vances ffor tie actions oI't'm RPLACD.
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(defun dash-listl (list)
(lets ()
(enumerateS #'null

#'(lambda (1) (progi (cdr 1) (rplacd I (cons - (cdr 1)))))
list))

list)

(defun dash-list2 (list)
(letS ((sublist (enumerateS #'null #'cddr list)))

(rplacd sublist (cons '- (cdr sublist))))
list)

I lowever, duc to the antagonistic interaction between the RPLACD and the enumerator, there is no aesthetic
way to express the stted algorithm using ie expressional notation. As will be discussed in more detail bclow,
this is one of the kinds of algorithms for which the expressional notation is not intended to be used.

Conversions and Coercions
iwo sequence functions are available for converting between unitary values and sequences: GSEQUENCE

which converts an object into an infinite sequence of that object, and RLAST which converts a sequence into a
unitary object by taking its last clement. It should be noted that the meta scqucnce function MAPS is like
GSEQUENCE in many ways. If passed a unitary object it will also create an infinite sequence of that object.
However, if you nest a unitary expression in MAPS it will be executed many times, while if you apply
GSEQULNCE to the expression it will be evaluated only once. For example. VECTOR-NCONS initializes a vector
by filling all of its slots with the same CONS cell. In contrast, VECTOR-NCONSES fills each slot with a different
CONS cell.

(defun vector-ncons (vector)
(Rvector vector (Gsequence (ncons nil))))

(defun vector-nconses (vector)
(Rvector vector (maps #'(lambda () (ncons nil)))))

In order to make things more convenient for the user, automatic type coercions are applied between
sequences and unitary values. Thc most iml)ortant coercion has already been discussed. Whenever a unitary
expression is placed where a sequence value is required. MAPS is automatically introduced in order to convert
it into a sequence expression. Note that GSEQUENCE is never automatically introduced and therefore VECTOR-
MCONSFS- IMPLIC IT is equivalent to VECTOR-NCONSES. and not to VECTOR-NCONS.

(defun vector-nconses-implicit (vector)
(Rvector vector (ncons nil)))

The places where sequence values are required are the sequence arguments to sequence functions and the

,xprcssion% to be hound to values in a LETS. These coercions are illustrated by the following pairs of

!quivalent loop expressions.

(RIist 1)
same as: (R1ist (mapS #'(lambda () 1)))

(lets ((x 1))

same as: (lets ((x (maps #'(lambda () 1))))

In the reverse direction, whenever a sequence expression is placed where a unitary value is required,

ILAST is automatically introduced to convert it into a tmit,ry value producing expression. 'hc places where
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unitary values are required arc the last expression in the body of a LETS and tie value of ioop expressions
which appear in isolation in ordinary Lisp code. Examplcs are shown below.

(lets ((x (Elist list)))
(mapS #'print x))

same as: (lets ((x (Elist list)))
(Riast (maps #'print x)))

(maps #'print (Elist x))
same as: (Rlast (maps #'print (Elist x)))

Some of the other featurcesof the expressional notation could also be looked at as coercions. lhr examplc,
the automiatic introduction oF MAPS and AT- END around lincs of a LETS. iiken together, these cocrciols have

no smantc imort thy do not make it possible to cxprcss anything which could not be expressed witho)ut
them. However, thcy do inake it signi ficant ly miore con ven ient to specif1y na n y kinds of loops.

Nested Lnaps
Like any looping notatioti. thc expressional notation can be used to express nested loops. Consider the

*program SUM-LISTS-IN-LISTI. It takes in a list of lists of integers (.g., ((1 2) (3 4) ))and returns a list
of the sums of these lists (e.g.. (3 7)). Tihe outer loop enumerates the lists ol'numbers in die list supplied as
the input to the function as a whole. The inner loop adds up the numnbers in these sublists. 1lhe outer loop

* ' then CONSCS these numbers up into a list t6 be returned.

(lets ((entry ([list list-or-lists)))
(setq entry (maps #'(lambda (l)-(Rsum ([list 1))) entry)).
(Ruist entry)))

In the program, MAPS is used to apply the inner loop to each list of' numbers in turn. T he LAMBDA used
with the MAPS delineates the boundary of the inher loop. This Could also be done by wrapping a LETS around
the inner loop (which-would then be implicitly MAPSed)as in SUM- LISTS -IN- LISTZ.

(lots ((entry (Elist list-of-lists)))
..... (setq entry (lets ( (Rsum ([list entry))))

(Rlist entry)))

ibough relatively clear, both of the above programs are somewhat cumbersome in appearance. If the
I (RSUM (ELIST .))were in isolation, there would be no need to wrap it in either a MAPS or LETS. 'The

same is true here. Thec algorithm can be more conveniently expressed as shown in SUM- L ISTS -I N-L IST3.

* (defun sum-lilsts-in--list3 (list-of-lists)
(lets ((entry ([list list-or-lists)))

(setq entry (Rsum (Elist entry)))
r (Rlist entry)))

Note that from the point of view of the element at a time metaphor, the body of the LETS is describing
what happens to a typical value of ENTRY. This typical valuc is unitary and therefore it makes perfect sense to
say that (RSUM (ELIST . .. )) is applied to it. However, as writen, the loop expression contais type
conflicts. The sequence ENTRY is supplied where ELIST expects a unitary input, and the unitary output of
RSUH is assigned to the sequence ENTRY. In order to deal with this, an automatic conversion is applicd which
parses each loop expression looking (or matched pairs of type conflicts like these. 'lhcsc conflicts are then
reslved by separating out a nlested loop which is MAPSed over the input sequence.

Unfortunately, there are several majiir problems involved with the automatic introduction of nested loops
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as described above. i' first is that although the third version of the program above is arguably more
readable than the first two versions. the process of representing a loop more and more compactly can easily by
carried to excess. For example, the next two versions of de program arc more compact and specify exactly
the .ame corlputation. I ltwevcr,. it is questionable whether they are casier to understand. Going beyond

this, more complex programs (such as triplely nested loops) become virtually incomprehensible if rendered in
such a dense exprcssional style.

(defun sum-lists-in-list4 (list-of-lists)
(letS ((entry (llist list-of-lists))) 5

(Rlist (Rsum (Elist entry)))))

(defun sum-lists-in-listS (list-of-lists)
(Rlist (Rsum (Elist (ElIst list-of-lists)))))

Another problem with the automatic creation of nested loops is that although the required parsing is trivial
in simple cases like the above, it is unlurtunately quite complex in the general case. One reason for this is that I-
there is considerable interation with the type coercion processes described above. Another stems from the
ifact that parsing also has to deal with the related phenomenon illustrated in the prograll SUM-COPY-OF-LIST
below. 'This program copies a list of integers and then computes the sum of the integers. Note that there are
no type conflicts in this program, and that the initial copying of the list is not a nested loop. It is executed in
its entirety hclbre the summation loop begins. Nevertheless, the copying loop has to be located and'separated

* from the rest of the loop since it is computed stparately. The need to do this further complicates the parsing
process. All in all the parsing/coercion process ends up being by far the most complex part of the
compilation process.

(defun sum-copy-of-list (list) - e
(Rsum (Elist (Rlist (Elist list)))))

A much bigger problem with the automatic introduction of nested loops is that the complex interactions

with other coercions are not just hidden inside the compilation process -- they can lead to considerable
confusion regarding seemingly simple loop expressions. For example, consider the progran ZERO-MATRIX.
As rendered below it has a simple explicit nested loop which sets all of the elements of an array to zero. If one
tries to express this more compactly, things rapidly become complicated.

(defun zero-matrix (A)
(letS ((i (Erantle 0 (1- (array-dimension-n I A)))))*

(letS ((J (Erange 0 (1- (array-dimenston-n 2 A)))))
-4 (aset 0 A ij)))) p

S1lic variable J is only used once in the inner loop. so the program ZERO-MATRIX-NO-J is equivalent to
ZERO-MATRIX. However, if you omit the inner LETS as in ZERO-MATRIX-BUGGY you no longer have an

;" equivalent piogram. This program is is not equivalent to ZERO-MATRIX. but rather to ZERO-DIAGONAL.

..

Fl

iU
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(defun zero-matrix-no-j (A)
(lots ((1 (Erange 0 (1- (array-dimension-n I A)))))

(lets ()
(&set 0 A i (Erange 0 (1- (array-dimension-n 2 A)))))))

(defun zero-matrix-buggy (A)
(lets ((1 (Erange 0 (1- (array-dimension-n I A)))))

(aset 0 A i (Erange 0 (1- (array-dimensIon-n 2 A))))))

(defun zero-diagonal (A)
(l ts () !I.

(aset 0 A (Erange 0 (1- (array-dimensIon-n I A)))
(Erange 0 (1- (array-dimension-n 2 A))))))

lhe problem is that there is a considerable amount of coercion going on in ZERO-MATRIX-NO-J which is
no longer forced in ZERO-MATR I X-BUGGY. In particular: the ASET is MAPScd over the sequence created by the
inner ERANGE: in conjunction with this MAPS. each individual value of I is in effect converted into a sequence
of identical values: and RLAST is used to convert the sequence of values created by the MAPSed ASET into a
unitary return value. In ZERO-MATRIX-BUGGY everything can be interpreted much more simply by assuming
that the two ERANGEs are being executed in parallel. It is a general feature of LETS that it only creates nested
loops when it is absolutely necessary -- it always tries to combine everything in ics body into a single loop.

Given the difficulties it causs, the obvious question is why support the automatic introduction of nested
loops? The problem is that the simple cases of implicitly nested kops arc so logically compelling that they
cannot be ignored. It seems to be an obvious benefit to be able t) use a simple loop expression (such as
(RSUM (ELIST X))) in isolation in a program. Add to this the fact that the clement at a time metaphor

i ., ,'suggests thinking about the interior of a loop as a specification for what happens to typical (unitary) values of
the sequcnces in it, and programs like SUN-LISTS-IN -LIST3 seem too reasonable to prohibit.

A Large Example

To conclude the description of the features of the expressional loop notation, this section presents a larger
example. Thc example is a data abstraction which implements cts of symbols as bit vectors. The abstraction
not only makes available some ordinary functions for operating on these sets, but some sequence functions as
well.

Sets are represented as bits packed into a single integer. The size, of the sets is limited by the number of
bits in an integer (e.g.. 24 bits on the LispMachinc). The global variable oBSET-OOMAIN* Stores the
correspondence between potential set elements and bit positions. This mapping is rcprcsented by a vector of
CONSes. The index of a CONS in the vector indicates the bit position which is being described. The CAR of the
CONS holds the symbol which corresponds to the bit position. The CDR of the CONS holds the representation
for a set which has only that one symbol in it (i.e., an integer with only the one corresponding bit on). The
variable *BSET-DOMAIN. is initialized to a vector of conses of NIL and the appropriate single element sets.
Note that the unit sets are created by a special generator which starts with an integer with a I in bit position 0
and then rotates this bit around from position to position.

(defvar *bset-domain
(Rvector (array nil T 24) (cons nil (generates #'(lambda (x) (rot x 1)) 1)))
"The bset domain element mapping.")

The global variable oISET-INDEX*. keeps track of the largest bit position used so far. The number -i is
used to represcnt the fact that no bit positions have been used yet.
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(defvar obset-indexs -1 "The largest bit position used so far.")

ibe function BSEI-RESET is used to reinitialize these variables. It MAPSCs over the vector inl OBSET- -r
DOMAIN* setting the CAR of each CONS ccli to NIL. and sets *DSET-INDEXO to -1.

(defun bset-reset (
(letS ((item (Evector ebset-domains)))

(sstf (car item) nil))
(setq *bset-index* -1))

The function BSET-UNITSET takes in a symbol and returns the unit set corresponding to it. It issues an
* error if the symbol is not representable as a unit set (i.e.. if it is not in the vector *BSET-DOMAIN.). It uses

ROR-FAST (which as described above, computes the OR of the items in a sequence. stopping as soon as a2
non-NIL item is encountered) in order to look ffur the symbol in *BSET-DONAIN. returning the corresponding
unit set as soo as it is found. Note that the COND in the HOR-FASI is implicitly N4APSed.

* (defun bset-unitsot (symbol)
(or (letS ((item (Evector obsot-domaine 0 obset-indexe)))

(Ror-fast (cond ((eq (car item) symbol) (cdi' item)))))
(error "symbol not in bset domain" symbol)))

Ibe function BSE T -ADD-DONAI N- ELEMENT takes a symbol and enters it in *BSET-DOMAIN. so that it can
*bc used in the bit vector sets. If the symbol is not already in the domain, and if there is an available bit
* position, then the program increments eSSET-INDEX* and stores the symbol in the appropriate CONS cell in
* e*BSET-DOMAIN..

(defun bset- add-dovasin-el emznt (symbol) . ~
(cond ((Ror-fast (eq symbol (car (Evector obset-dommine 0 ebset-indexe)))))

((obset-index* 22) (error' "bset domain size uexceeded" nil))
(T (mncf obset-indexe)

(set? (cer (aref *bset-gomaino *bset-indoe)) symbol))))

As examplcs of the kind of ordinary functions which would be implemented as part of the data abstraction
consider the following four. The first three are examples of the operations for which the bit vector
implementaioni is particularly efficient. Intcrsection, union, and the test for equality between two sets can Al
be implemented as single operations independent of how many symbols arc in the sets operated on.

(defun bset-intersect (bieti bset2)
(logand bsett bset2))

(defun bset-unlon (bseti b*9et2)
(loglor bsett bset2))

* (defun bset-equal (bseti bsetg)
(bsetl bset2))

1(defun bset-nem (symbol beet) P,
(not (zerop (bset-intersect (bset-unltset symbol) beet))))

* The next four definitions arc examples of the kind ot sequence functions which would be provided as part

of the data abstraction. '11)c first two implement reducers which can be used to take the intersection and
union of-sequcm.-es ofbtvector sets. The third (EBSET) takes in abit vector set and creates a sequenc of the
symbols in that set. 'li last (RBSET) performs the inverse operation, taking in a se;qucnce of symbols and

* creating d Set by taking the union of the corresponding unit sets.
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(defunS Rbset-lntersect (&soquencs bast)
(reduceS 9'(lambda (x} (bsut-intersect x bast)) -1))

(defunS Rbset-union (&sequence bast)
(reduceS 9'(lambda (xa) (bset-union x bast)) 0))

(dofunS Ebset (boot)
(car (filterS #'(lambda (x) (not (zorop (biet-intersect (cdr x) baot))))

(Evector obset-domains 0 obset-indoee)

(detunS Rbset (&sequence symbol)
(Rbset-unlon (bset-unitset symbol)))

The example above is a particularly good one in that it shows the expressional notation being used to
represent a variety of loops which are small and simple. Ibis is the application Mor which the flotation has
been specifically designed.

lo
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III - Evaluating the Expressional Notation

One way to summarize the expresional loop notation is as a collection of basic ideas. First, there arc three
themes which undcrlie the notation.

The I.'xprssional Aletaphor-'Ibe idea that loops can be expresed as compositions of fragments of
loo)ing behavior is the fundamental motivation behind the notation.

The I"lement at a Time Aletaphor -lhe additional metaphor that a loop can be convenicndy specified
as a set of operations on typical elements also underlies the notation as a whole.

I:J)Micnt (Uoipilation - From the beginning, it was decided that it had to be possible to compile the
notation into efficient looping code. This efficted many of the design decisions.

'There arc six basic features of the notation which together support these themes.

Sq. c1 ce Functions- 'Ihse embody the fundamental notion of a fragment of looping behavior. The
fact that they look and can be reasoned about essentially just like ordinary functions supports the
expressional metaphor. Restrictions on the kinds of sequence functions allowed (e.g., the
requirement for registration between elements of'their inputs and outputs) support the element at a
time metaphor and efficient compilation.

Sequen-es- These are the mode of communication between sequence functions. The fact that they
look like and can be reasoned about much of the time just like ordinary aggregate data objects
supports the expressional metaphor. The fact that they are defined to be one dimensional series of
slots containing unitary values where each slot corresponds to one cycle of the loop which will
eventually be produced is the fundamental underpinning for the element at a time metaphor and is
essitial for efficient compilation.

User Definition (f Sequence Functions -7hc fact that the user can define his own sequence functions in
analogy with the definition of ordinary functions greatly extends the utility of the notation.

Meia Sequence Iunctions -'liese make it possible to specify new kinds of operations on sequences.
On the one hand. they provide a very convenient mechanism for this specification. One the other
hand. they embody tie restrictions which are necessary in order to insure that it will be possible to
efficicntly compile the specified operations. In this context it is important that the notation does not
provide any more general method for specifying sequence computations.

Loop IAxprcs.sion Blocks-Calls on LETS serve two basic purposes: delineating groups of loop
expressions which are to be combined into a single loop, and supporting the notion of variables
which have sequences as their values. 'ie body of such a block is the place where the element at a
time metaphor is most prominent.

Coercions- The existence of coercions such as the automatic introduction of NAPS is an important
underpinning for the clement at a time metaphor. Other coercions such as the detection of nested
loops and automatic conversions between "qucnces and unitary -values exist merely as a
convenience for the user. Note that in order to make the above coercions practical. variables
containing sequences have to he readily identifiable as such.

In order to investigate the efficacy of the expressional loop notation as a whole, one must look at it from
several points of view. In particular, one must evaluate the kind of loops it can be applied to. how efficiently
it can be executed, and how casily it could be applied to other languages besides Lisp.

[-
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Domain of Applicability

hlie expressional loop notation is oriented towards the kinds of straightforward loops which are most
common. In order to make it easier to express these loops, it deliberatcly sacrifices more general applicability.
As a result, there are a number ofsituations where the expressional notation is not appropriatc.

'l'he basic approach of the notation is to express a loop as a composition or fragments of looping behavior
represented as squencc functions. 'l7cre arc two main situations in which this opproach is ineffective: when
a loop cannot he separated into multiple fragments, and when the notion of a sequence function is not
capable of expressing the required fragments.

It is quite possible that even a large loop will not be decomposable into fragments. In order to break a
loop down into two fragments A and 1, it must be the case that A and I are both self contained units. In

• ... particular this means that there can be no interaction between A and 8 other than data flow from A to B. Note
that dher cannot be any data flow from B to A. In some loops, all of die computation is linked together in a
tight net of data flow. In that case it cannot be decomposed. For example. consider the program BINARY-
.EM which tests whether a given integer is in a sorted vector of integers by doing a binary search.

(defun binary-mem (integer vector)
(prog (left mid right Item)

(setq left 0)
(setq right (1- (array-length vector)))

L (cond ((> left rtght) (return nil)))
(setq mid (// (+ left right) 2))
(setq item (aref vector mid))
(cond ((> item Integer) (setq right (1- mid)))

"( item integer).(setq left (1+ mid)))
(T (return T)))

(go L)))

'lhe program cannot be decomposed into a composition of fragments because each part affects every other
part. The values of LEFT and RIGHT are used to compute MID which is used to compute ITEM which is used in
a test which determines the next values of LEFT and RIGHT. Because it cannot be decomposed. there is no
way to write the program any more clearly using the expressional notation. The best that could be done
would be to write the program as one huge sequence function.

Often sidc-effects tic together parts ofa loop which might appear to be separable. An example of this was
shown in the section on side-effects above. The basic algorithm presented there for adding dashes into a list
cannot be decomposed because the RPLACDs performed on the sublists which arc enumerated modifies the
state of the enumerator. The only solutions are either to represent the program as a single fragment as in
DASH-LISTI, or to write a program like DASH-LIST2 where the loop appears to have been decomposed but
actually has not. Both approaches are unsatisfactory. Neither program is particularly easy to understand, and
the second program violates the basic spirit of the expressional notation. It would be better to refrain from
using the expressional notation fir this kind of program.

'le expressional loop notation is also limited in the kind of loop fragments which it can represent. As
described above, one area of limitation is a result of the simple notion of sequence which underlies the

- notation. 1his makes it impossible to express fragments which alter te order of elements in a sequence or
. which merge sequences.

' ihe only facilities available for creating fiagments are the meta sequence fiuctions. Fxpericnce has shown
that these are capable of creating a wide range or useful fragments. However. there are a variety of platsible
fragments which cannot be creatcd. For cxample, ENUMERATES always creates fragments where the
termination test is performed at the start of each cycle of the loop. It is not pos.ible to create a fragment

where the termination test is performed at the end oreach cycle.

... .. .. ..... ....



SIvaluating the FExpressional Notation - 32- Waters

Another example of a fiagnent that cannot lhe represented as a sequence funclimi is the idea of doing
output to a report file a, discussed above in conjunction with the program INVENTORY-REPORT. An
iniporlalt thing to notice fom that example however, is that LETS makes it possihle to combine a fragment
like this one wilh a loop in expressional notation. "11iis, coa siderahly extends the domain of applicability of
the notation. A vital feature of this is th iI the notation acts to protect the semantic integrily of the standard
fragneuts when a non-standard fragment is added. Thc primary way it does this is by hiding die internal state
variables of the standard firagments, so that non-standard fragments cannot modify them.

Another more fundamental reasi)n why the expressional loop notation may not he appropriate is that sone
other paradigm may be more appropriate. Ior example, consider the function GCD. Writing it as a recursive
program makes it very easy to understand because the structure of the program exactly mirrors the structure
of the slandaid proof of correctness lbr the algorithm. No iterativc rendition would be as clear.

(detun gcd (x y)
(cond ((< x y) (psetq x y y x)))
(let ((r (remainder x y)))

(cond ((zerop r) y)
(T (gcd y r)))))

In addition, it should Ie noted that unlike some looping notations the expressional notation does not
1 handle anything but simple loops. For example, it does not support multiple entry points nor, by itself, exits r

to multiple points.

Efficient Execution

There are two principal ways in which the expressional notation could be executed: dirc(t 'xecuiion, and
(on verion lo iieraflive loops. [he most straightforward way would be to just implement sequences as nomial V
data objects and the sequence functions as normal functions. l.oo)p expressions could then bc evaluated just
like any other expressions. "lbis direct execution approach is taken by At'l. 1101. On the other hand. a
compilation process can bc used to convert loop expressions into ordinary iterative lops which operate in an
clement at a time fashion. This conversion approach is used by LETS and the languages Ilibol 112.131 and
Model I 11]. I

The main advantage of direct execution is that it is casy to implement. In particular, it is very easy to see
how it directly supports the expressional metaphor. The main disadvantage of direct execution is that. in
compari.n with ordinary iterative loops, it imposes very large time and space overheads.

The main advantage of the conversion approach is that it is capable of creating very efficient code. In fact
there is no reason in principle why there has to be any time or space overhead at all. Thcre arc, however, two
drawbacks to this approach. First, die conversion process can he quite complex. Just how complex depends
on exactly what faciliti:s are supported by the notation. Second. tie conversion process is Fundamentally
related to the element at a time viewpoint. As we have seen. due to issues like tennination and side-effects,
this viewpoint cannot he hidden from the user. As a result the user has to keep this metaphor in mind as well
as the simple expressional me aphor.

When designing the expressional notation it was lIhlt that the issue of efficiency could not be ignored. As a
result, the notation was designed from th,: beginning with conversion in mind. [his had two major effects on
the design. I-irsl. wheneoer a potential feature of the notation would h,,ve un1l1(1tly complicated the conversion
process it Was di-carded. ,econd. the element at a time metaphor was introduced as an explicit part of the
motivation behitd the notation. Fhesc precepts rcsulted in a notation which is in fact relatively
straightiww aid to onml)ii: into efficient code.

The LC Is macro packvige implemels the notation tusing a straightforward set of macros hich conmert

6 p
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each expression into an ordinary loop. No explicit representation for a sequence is ever required. The.
compilation process is described in detail in Appendix B. The next few paragraphs outline the major features
of the process. IV

Foach sequence function is represented by a data structure specifying some initializalion computation to
perfbrn before the loop begins, some inside computation to perform repetitively on each cycle of the loop,
and some epilog CompuLation to perl*orm after the loop terminates.

A composition of two scquence fuictions "(A (B . ) )" is compiled by combining their parts together
into a new compound sequence function. 'he resulting initialization, insides, and epilog are derived by
concatenating the corresponding parts of B and A. 'llie data flow from B to A is implemented by data flow
from the inside part olB to the inside part of A in the new compound inside part.

When a loop expression is encountered, it is first parsed in order to locate all of the sequence functions in
it. 'le mcta equence functions are implemented as macros which take their functional argulments and create
an appropriate sequence finction. As part of the parsing process, implicit MAPS introduction and other
coercions are introduced. The loop expression is then compiled by combining all of the sequence functions in
it togethcr. Once this has been done. the resulting fiagment is converted into an actual loop with the
indicated parts.

Returning to a discussion of alternate implementation strategies, it should be noted that in order for direct
execution to be used with the expressional notation the notation would have to be altered in several
non-trivial ways. To start with, the notation supports potentially infinite sequences. For example. inside the
typical enumerator is a generator creating an infinite sequence, and a truncator cutting this down to fivite
length. You cannot just compute the entire generated sequence before truncating it. The easiest way to deal
with this is to fillow the lead of API. and simply outlaw generators and infinite sequences, allowing only
enumerators of finite sequences. However, as we have seen, subsidiary generators can be very convenient in W,

programs such as OIGITS-TO-NUMIER.
A much more fundamental set of problems arises from the fact that the clement at a timc metaphor is

fundamentally incompatible with direct execution. The behavior of termination and side-effects is completely
different in the context of direct execution. In many situations it is not clear whether these alternate behaviors-.
would be more or less useful. However, with regard to programs like INVENTORY-REPORT which are
particularly well suited to the element at a time metaphor, they are quite likely to be less convenient. In any
case, it is a fundamental change and much of the notation would have to be redesigned.

There has been a lot of interesting work which tries to chart a middle course between the simplicity of the
direct execution approach and the efficiency of the conversion approach. One way in which this has been
done is by representing sequences explicitly, but without trying to compute the elements in them until they
are actually needed. 'his can be done explicitly through coroutines[7], or implicitly through lazy
evaluation 14,61. In LispMachine Lisp, this could be done by using streams to represent sequences. Note that
this delayed evaluation approach is capable of dealing with infinite sequences as well as finite ones. Also note
that from the point of view of what gets executed when, this approach entails a moe or less complete w
conversion to element at a time processing.

Although delayed evaluation is more efficient (particularly in space) than direct execution in many
situations it is still much less efficient than complete conversion. Several researchers have pursued an
interesting mixed mode approach which provides an interpreted implementation where sequences are
represented explicitly and. in addition, provides a compiler which performs conversions to eliminate S
inlermediate sequences whenever posqibl.

'Ihe premier example of this has been the work on compilers for APL 12,51. Optimizing API compilers
attempt to locate array expressions where the arrays are being used merely as intermediate sequences, and

7 .
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then eliminate the actual computation of these arrays. When an expression corresponding to the kind of
simple loop repn'esentabic by the expressional notation is locatcd. then it is easy to climinatc the intermediate
arrays. Wadler's IListless 'lransformier I lS] pursues a similar approach for compiling a lisp-like language. It

Likes programs where finite intermediate sequences are represented as lists, and converts them into programs
where these intermediate lists do not actually have to be created. The resulting programs can then be
efficiently compiled by nonnal means.

ULnfonrtunatcly, there are several inherent problems with the partial conversion approach. First, since
direct execution of unconverted loop expressions must be supported. the notation must have all of the
restrictions outlined above. Second, the only reason to puisue pardal conversion is that the notation supports
ca6lure.s which cannot be practically converted. Unfortunately this raises a whole new problem -- that of .

identifying what pans of what loops can be converted. In addition. steps have to be taken to intcrface loop
expressions which have been convertcd with those which have not.

A third and much more serious problem is that in the presence of side-effects, conversion is not a

correctness preserving process. The reason for this is that it entails a radical change in execution order from
computing each sequence as a unit to processing several sequences an element at a time. To deal with this
you either havc to refrain from converting any loo)p containing side-effects (including input/output) or you
have to specify that such loops will always be converted and require the user to think in term, of the element
at a time metaphor. Note that the latter approach cannot be taken if it is possible fir the user to write a
side-effect conutining loop which cannot be converted.

'Ihe approach taken here has been to avoid this kind of problem by simplifying the notation to the point
where conipiete conversion is practical. hlie languages I lihol and Model support somewhat similar notations
(described in greater detail below) which arc also suitable for complete conversion.

Language Independence

All of the discussion above was couched in terms of Lisp, and the initial implementation of the
expressional notation has been done for Lisp. However. none of the ideas presented here are inherently
dependent on any specific language. It is true dat it is particularly easy to make this kind of extension to the
language lisp. However, by modifying its compiler this could be introduced as an extension to any language.
For example. you could add the expressional loop notation to the language Ada [1 by supporting the six basic
1eatures of the notation as follows:

Sequence Functions- As in the Lisp implementation, calls on sequence functions would look
syntactically exactly like calls on other functions: however, they would be handled like macros in 0.

order to create loops as described above. A set of basic sequence functions would be provided as
part of the standard environment.

Sequences - A new data type SFQUENCE OF would be added. This could be used to specify the data
types of variables and of the arguments to sequence functions.

User Deflnition !f Sequence functiuns- A new kind of function declaration SEQUENCE FUNCTION P
would he added. Usiig this , sequence functions would be defined exactly like ordinary finctions.
"Thew. would be the only fhnctions allowed to have parameters and/or return values of type
sequence. Similarly, SEQUENCE PROCEDURE would be used to define procedures operating on
sequcnces.

Aela Sa'quc'ie Punctions - ENUMI RATES, REDUCES, etc. would be provided as built-in functions. As in
the lisp implementation, these would appear syntactically to he functions taking fenctional
arguments: h,wevcr. they would be handlcd b) the comttpiler essentially as macros.
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lm)p Exprssiw Biocks- A new keyword Ill'GIN SEQUEiNCI lXI1RiSSION would b itroduced.

'his could be used in place of BEGIN in begin blocks, subprogram bodies etc. Only these blocks
would be allowed to have variables of type sequence. Fach such block would be compiled into a
single loop.

Coercions- Given that the sequence data type would be used to identify all of thc variables which carry
sequences, various coercions could be supported in exactly the same way as in the Lisp
implementation.

The following examples show what loop expressions would look like in Ada. 'Te first is a program which
takes in a vector of digits and compuLes the corresponding integer. The second program illustrates the
definition of a sequence function. -.

type int-vector is array (integer range 0) of integer;

type intsequence is sequence of integer;

function digitsto.number.ada(digits: int.vector) return integer;
function times-ten(x: in.teger) raturn integer;
begin return x*1O; end;

digit, scale: int-sequence;
begin sequence expression

digit :a Evector(digits);
scale :a generateS(tmes-ten, 1);
return Rsum(dgitscale);

end;

sequence function Rsum(lnts: lnt.sequence) return integer;
begin sequence expression
return reduceS(+, 0. ints);

end;

Due to the type information which has to be specified and the fact that there is no compact reprcsentation
for literal functions, the above prograns are quite verbose. However. they are identical in basic structure to
their Lisp counterparts.

LS St
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IV - Comparison With Other Loop Notations

Consider the progran SUM-POS IT IVE-EXPRESSIONAL (reproduced below) which was used as an examplc
in the bcginning of this paper. There are many diffecrnt computationally equivalent ways to represent any r
given loop. All of these representations are capable of expressing the same basic looping algorithm. In order
to evaluate the u%efulness of these representations, we must look at other characteristics beyond

* •exprcssivcness.

(defun sum-positive-expresslonal (vector)
(Rsum (Fgreater (Evector vector))))

SThe paramount property required of a looping representation is unders'/,dabiIiiy i.e., how easy is it to
look at a loop and deternine what the loop is computing. Two closely related properties are als) of great

S"importance. lie first is consinwtibility i.c., given a specification. how easy is it to build up a loop which
satisfies the specification. The second is modifiability i.e., given a lIop, how easy is it to change it inr
accordance with a change in its specification.

Thc key idea behind the expressional loop notation is that most looping algorithms are built up out of
stereotyped fragments of looping behavior and therefore loop programs are easier to understand, construct,

and modify if these fraggments are expressed as easily identifiable syntactic units. In the expressional notation.
loop fr:gments are represented by sequence functions. Many other looping notations have methods for r
representing at least some loop fragments. Discussion of these methods is the major theme of the
comparisons below.

ITwo things act as the focus for the following sections. The first is thde loop in the program SUM-
POSITIVE -EXPRESSIONAL. Each section shows how the loop notation being discussed could be used to
express this algorithm. 'Ihe second focus is-the six basic features of the exprcssional notation. The sections
are ordered from simple constructsL which have very few of these features to languages like API. and IHibol
which embody most of them.

PROG ard GO

h'le program SUM-POSITIVE-GO shows how our example loop could be implemented using a PROG and
GO. The program is not very easy to understand because PROG and GO suggests a particularly unfortunate way
to think about the loop, namely that it is basically a straight line piece of code which is converted into a loop
by the addition of a GO. T'his notation embodies none of the basic features of the expressional notation. The
key idea which is bcing missed by this way of thinking is that straightforward loops like this one are built up
out of standard fragments of loops and not out of standard straight line fragments.

(defun sum-positive-go (vector)
(prog (sum i end)

(setq sum 0)
(setq 1 0)

* (setq end (1- (array-length vector)))
L (cond (() i end) (return sum)))

(cond ((plusp (aref vector 1))
(setq sum (+ sum (are vector 1)))))

(setq 1 (1+ ))
(go L)))

Instead of highlighting the loop fragments, the program breaks them tip iito pieces ird then mixes the
pieces together For example, the enintmerator is broken up into three pieces: ain initialiation which sets the
starting eiLne for I. a termination test that terminates the loop aftcr the last index is produced, and a repetitive
step which increments I cach time aromid the loop.
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just as difficult to see how the fragments interact its it is to identify the fragments themselves. ihe

rator and tie filtcr interact by sharing the variable I. In contrast, tie interaction betw'een the filter and
luccr is represented by embedding part of the reducer inside of the filter CONO. 'Tis is particularly
ing because the COND looks like it is implementing an ordinary straight line conditional fragment. One

look carefully at the surrounding context in order to see that this is not the case.
wough the above points have been presented primarily as problems of understandability, they cause

nuch trouble with regard to constructibility and modifiability. In particular. the fact that the

nLs are not localized means that neither the construction nor modification processes can be localized.
reatly complicates both tasks. Another problem is that since the variouts fragments are just mixed

!r, there is no support for keeping them semantically separate. One must be paiticularly careful that
icing a new fragment will not disturb one of the other fragments.
)ther kind of problem with PROG and GO as a notation for straightforward loops is that it supports a
r of features which are needed only in comple=x situations and which obscure simple loops by cluttering
p. 'I'wo examples of these arc: the fact that PROG supports multiple tags, GOs and RET UR Ns; and the fact
illows multiple assignments to the key variables involved. These features are particularly problematical
c even when they are not being used, you have to look very closely in order to determine that they are
not being used. In the example, you have to verify that there is only one tag, one GO, and one RETURN

.it there is only one assignment to each of the critical variables in the loop befLorc you can have any
-ncc in what is going on.
!re are algorithms for which a PROG and GOs are particularly appropriate. For example, if a program

icnts a finite state automaton, GOs can be used to directly model the transitions. GOs can also be used to
tent various exotic multiple entry and multiple exit loops. However, it is generally recogni/ed that GOs
er the best way to implement simple loops.

Tail* Recursive Style

program SUM'POSITIVE-RECURSIVE is written in tail recursive style. 'lThough it looks very different
JM-POSITIVE-GO it specifics essentially exactly the same algorithm. A compiler which knew about tail b
)n would produce the same object code for the two prograrns. SUM-POSITIVE-RECURSIVE is
iat easier to understand because much of the verbiage is removed. 'rherc is no longer any possibility
iplc tags, GOs, or RETURNs. As a result. the reader does not have to worry about them. In addition, the
t each value changes only once on each cycle of the loop is easy to see.

lefun sum-positive-recursive (vector)
(sum-posttive-recursivel vector 0 0 (1- (array-length vector))))
lefun sum-posltive-recurslvel (vector sum i end)
(cond ((> 1 end) sum)

(T (sum-positve-recurslvel vector
(cond ((plusp (aref vector 1))

(+ sum (aref vector 1)))
(T sum))(1+ I)

end))))

PROG, the tail recursive style suggests a particular way of looking at a loop. Namely, that we should
ze thc task at hand into a problem that can be recursively reduced a step at a time to a prohlem that is
j solve. In this case the trivial problem is adding up the positive elements of a sub-vector of length
he generalizcd problem is adding up the positive elements of a sub-vector and adding this to an initial
urn. 'The recursive step involves adding one element into the partial sum, and reducing the size of the

• ,



Comparison With Other iLop Notations - 38 - Waters

siib-vcctor.
TUhere are loops which can he best understood by looking at them from the recursive viewpoint. However,

this program is not one of them. 'lhe problem is that the tail recursive style is no beliter than a PROG at
highlighting the fragment, that the loop is composed of. As above. the fragments are broken up and mixed
together. In addition, the way the fragments interact is still unclear. I-'or example. part of the reducer is still
nested in the filter. The "(T SUM)" clause which has to be added into the filter COND makes that interaction
even less clear than in die PROG above. I ike PROG and GO, the tail rccursive style does not support any of the
features of the expressional notation. r

FOR
The next few sections describe notations which begin to support the idea of a sequence function (i.e.,

fragments of looping behavior as identifiable units). They do riot howcver support any of the other fcatures
of the expressional notation.

Most algorithmic languages have looping constncts which facilitate the construction of simple loops. A
typical example ..; these is the Ada FOR construct Ill. The Ada program SUMPOSITIVEFOR illustrates the
use of this construct. One benefit of FOR is that like the tail recursive style, it clearly delimits the extent of the
loop and makes it clear that there is no exotic control flow going on in conjunction with the loop.
Unfortunately, it is less helpfil with regard to the data flow. There is no easy indication that cich of the
critical variables is only modified once.

type int-vector is array (integer range 0) of integer;

function sum-positive-for(vector: intvector) returns integer is
sum: integer;

begin
sum :2 0;
for i in vector'range loop

itf vector(1)>O then
sum :2 sum+vector(l);.

end if;
end loop; t
return sum;

end;

A much more interesting aspect or FOR is that it explicitly represents one of the rragments -- the
-numerator of integers over the bounds of the array. This explicit representation of the fragment is
warticularly useflul because (unlike the FOR constructs in most other languages) the Ada FOR construct protects I
he semantic integrity of the fragment by prohibiting the loop counter from being modified inside the loop.
%s a result. this particular fragment is easy to understand. construct, and modify.

Unlirtunatcly. FOR is only capable of supporting this one kind of enumerator. 'there is no support at all
6r any o' the other fragments in the loop. They are represented using straight line code in exactly the same
kay as in SUM-POSIT IVE-GO. As a result FOR is really not that nmch of an improvement over GO with regard
o) thee other fragments.
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Iterators in CLU
TIhe language CL U 181 has extended tie concept behind thc FOR construct so that it can represcnt other

enumerators besides integer enumerationl. In CLU yoLI can define a program called an ileral)r which takes in
sonme unitary argumcnts and creates a sequence of objects. The iterator can then be used in a FOR in order to
enuicrte sequence of elements to bc processed in the hody of the FOR. CI.,U prbie a w r of
standard iterators including one corresp~onding to EVECTOP. As an illustration. thc first programn below Shows
how EVECTOR could bec defined if it did not alreac'y exist. Tlhe program SUM-POSITIVE-CLU then shows how
the ilterator could be uised.

Evector itetr'(a: array~intJ) yields(lnt)
1: int :=a erray[int)Slow(a)
end: int :s: array(int]$hlgh(a)
while i <(s enfd do
yield(a~i)

end
end Evector
sum-.positive..clu proc(a: array(int]) r'eturns(lnt)

sum: lot :2 0
*for e: int in Evector(a) do

if e > 0 then SUM :2SUM + e end
end
return( sum)

end sum....posiive..clu

Ilecause there are no restrictions on the form that the body of an itcrator can take (fo~r example there is no
requirement that it even be a loop). iterators arc more general than the enumerators presented here.
I-lowever, this power has drawbacks. For example, it makes it more difficult to define a inet sequence
function like ENUMERATES. In addition, it would be difficult to treat itertr like macros and compile them
inline in the loops which use them. Thle current CLII compiler implements iterators as separate pr(Xedures
which return one elericnt of' the sequence every time they arc called.

From the standpoinmt of understandability, an imnportant aspect of itcrators is that their semantic integrity is
* protected by the fact that they encapsulate their own state. In fact, iterators embody Mec logical concept of

enumecration fully as; well as the enumerators presented here-. (it should be noted that the language
Alphard (14] has a similar construct called a Lenerazor.) Unfortunately, neither of these language poided

d ~any support ror any fragments other than enumerators. As a resulIt, each of these constructs is only a limited
* . (though significant) imnprovement over simple FOR in the direction of supporting fragments.

Lisp DO
Another variant on FOR is the Lisp 00 constnict. 'ibis construct is interesting because it recognizecs the

Uexistence of loop fragmntts other than enumerators and attempts to group their parts more closely together.
Fach of the initial lines of the DO is capable of represeniting a loop fragment. F~or example, the initialization
and repetitive step of thc index enumerator are combined together in the first line of the 00 in the program
SUM-POSITIVE-DO.
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(defun sum-positive-do (vector)
(do ((1 0 (1+ 1))

(end (1- (array-length vector))) r
(sum 0))

((> I end) sum)
(cond ((plusp (are? vector 1))

(setq sum (+ sum (aref vector 1)))))))

Unfortunately, 00 is very restrictive in the way it can represent fragments. For example, the termination
test of the enumerator has to he specified separately, causing the enumerator to be less conveniently r
reprcsented than in a FOR. In addition, there is no good way to represent a filter at all. Going beyond this. the
interactions between the fragmenL have to bc represented in the same clumsy ways as in the programs above.
For example, a COND still has to be used to express the interaction between the filter and the reducer.

At a more fundamental level, although O0 makes it easier to write loop fragments as identifiablc units, it
does not enofircc their semantic integrity. For example, you could easily put an assignment to I in the body of
the DO. If you did this the computation involving I would no longer be an index enumeration. This would be
particularly confusing because the first line of the DO would still look like an ordinary index enumeration.

All in all, it is clear that the various FOR and 00 constructs are quite beneficial because they make it easier
to Iocate a simple lo)p, and to verify that it is indeed simple. However. although these constructs point in the
direction or explicitly supporting loop fIragmets they do not do this in either a very thorough way or a very

* sema-ntically strong way. As a result, they are only a modest help in the understanding, construction, and
modification of loops.

The Lisp Map Functions r
'l'he lisp MAP functions are very restricted in what they can do. For example. they cannot be used to

express the algorithm used in the examples above.. However, when they can be used they are very compact
and easy to understand. FKach of the six 4AP functions is an abbreviation for a particular combination of loop
fragments. '11e pair of equivalent expressions below shows the fragments corresponding to MAPCAR.

(mapcar #'?unction x)
same as: (Rltst (mapS #'function (Els1st x)))

l.ach MAP function embodies a certain set of fragments and protects their semantic integrity. If these
fragmenLt are appropriate to de algorithm at hand. then the use of the MAP function leads to a program which
is easy to understand, construct, and modify. The expressional loop notation is designed to extend the basic
idea embodied in the MAP functions to a wider domain of programming.

The Lisp Macro LOOP
'he l.isp macro LOOP 131 is a significant improvement over the constructs presented above because it

recogniics l op fragments of all kinds as full fledged constituents. Consider the program SUM-POSITIVE-
LOOP. In this program, the enumerator, filter, and reducer are each represented (n a separate line in the loop.
"Ibis gives a prograrn which is much easier to understand, construct, and modify than the ones above. A
number of standard l(x)p fragments are supplied as part of the macro.
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(defun sum-positive-loop (vector)
(loop for item being each vector-element of vector .

when (plusp item)sum item))

In addition to supporting relatively general fragments and their combination. LOOP supports the creation
"1." ofriscr defined fragmcnts of all kinds. The example below shows how one could define VECTOR-E LEMENT OF

which is the equivalent of the sequence function EVECTOR.

(define-loop-path vector-element Evector (of))

(defun Evector (ignore variable ignore phrases ignore ignore ignore)
* (sublis (list (cons 'expr (cadar phrases))

(cons 'variable variable)
(cons 'vector (gensym))
(cons.'i (gensyn))
(cons 'end (gensym)))

'(((vector) (1 0.) (end))
((setq vector expr)
(setq end (I- (array-length vector))))
( I end)
(variable (are? vector 1))
nil

..- (t0(0+ M)))M

Unfortunately, LOOP neither develops the concept of a sequence. nor the analogy of treating loop
fragments as functions. 'lis prevents it from expresing loops as equence expressions in analogy with
ordinary unitary expressions. Instead, LOOP supports a keyword-bascd syntax which specifies both the
fragments to be usd. and how they are combined. 'Tlic way fragments can be combined is rather restricted
because it is tied up with the keyword parsing algorithm.

- In addition, the LOOP macro has a body part (not used in the example above) just like the body of a DO.
* * This body can contain arbitrary computation -- there is no attempt to protect the semantic integrity of the

individual fragments in the initial part of the LOOP. "
Another problem with LOOP is that the facilities it provides for defining the equivalent of new sequence

functions are rather cuinbersomc. Unlike the expressional notation, there is nothing corresponding to the
meta sequence functions. The user has to define a function which can deal with parsing parts of the LOOP
syntax and which retur9 a list of six pieces which are put in different places in the loop being constructed.
Acting together, these pieces have to perform the actions of the desired sequence function. At the most basic
level, this is quite similar to what happens in the expressional notation. However, it seems better if the user

does noi have to interact with the system at this low a level.

APL
1'here are several programming languages which support what are essentially expressional loop notations. U

The oldest of these is API. 1101. It is interesting to note that there is no reason to believe that the developers of
API. had anything like the expressional loop notation in mind. Rather, they were just seeking to provide a set
of very useful operations on arrays. However, a style of writing API. has evolved where sequences are

'- implemented as arrays.
-The implementation of sequences as bona fide data objects automatically suppons four of the six features;

of the expressional notation (i.e., sequences. sequence fuinctions, user definition of sequence functions, and
loop expression blo:ks). As illustrated below, both sequence functions and the vector summing algorithm can
he very compactly represented in APi Note that since sequences are directly represented as vectors, there isr

" -" " " " l . . .. . .. . : .. . . . .' " " : , - ,, .. , - .,
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no need for the function EVECTOR.

V RESULT FGREAY'ER VECTOR
[ VI RESULT-( VECTOR>O)/VECTOR

V RESULThRSUM VECTOR
[1) RESULT + / VECTOR

V

V SUM*SUMPOSITVEAPL VECTOR
[I] SUM-RSUM(FGREATER ( VECTOR))

API. also has operators similar to the meta vequcncc functions. For example, "functionl value" is the same
as (REDUCES funclion ini value) and "functiot\value" is the same as (SCANS funcliun jnil value). (in both
casc4s the i|it is automatically chosen to be the identity element underfunclion.) Unfirtunately. user defined
functions cannot be used with these operators, so each one only actually corresponds to a small number of
built-in sequence functions. API. supptis the notion of a filter in a more general way than it supports
RE'.iCES and SCANS. "(funclion( value) )/value" is the same as (rILTERSfuncion value). Ibis operator
(the two argument form of /). which is called compression, takes in two vectors and creates a vector of
elements from the second vector which correspond to non-zero elements of the first vector. Any arbitrary
finction can be used to create the first vector. A binary finction rather than a unary one is used in the
example. (Note that compression makes a shorter vector, rather than introducing empty elements.)

API. has no operator- corresponding to the meta sequence functions GENERATES. ENUMERATES, or
TRUNCATES. Since sequences are represented as arrays, there does not have to be any equivalent of the
sequence functions EVECTOR and RVECTOR. Further, since arrays are the only composite data structure
supported by AP., there do not have to be iny enumerators or reducers which deal with other data structures.
Since all arrays are finite, there need not be any generators or truncators. API. does have an operator (the
index generator " iN") corresponding to (ERANGE I N). Note that the fact that the meta operators provided
by API. arc somewhat limited does not prevent the user from defining any kind of sequence function he
desires by simply using more primitive constructs to write the appropriate function on arrays.

API. also supports the idea of implicit MAPS to %.)mc extent. .very. scalar function can be applied to
vectors with the meaning that the operation is to be applied to every element of the vector. Also, scalars are
coerced to vectors wherever necessary. loth of these processes are happening in the expression (VECTOR>O)
above which takes in VECTOR and produces a vector of zeros and ones which indicate which elements of
VECTOR are greater then zero. 'Ibis cannot be done as completely as with the expressional notation presented
here because there is no mechanism for differentiating between arrays which arc arrays, and ones which are
intended to be sequences.

'Iere are two ways in which API. is more powerful than the expressional notation presented here. First, it
supports a number (if operators which are much more powerful. For example, it has a number of operators
which rearrange the order and structure of an array such as reshape, concatenation (of two vectors), expansion
(the inverse of compression). reversal, rotation, and grade up (sort). It has complex meta operators oi pairs of
arrays such as outer product and inner product which produce output, which are not the same shape as the
inpuls. In addition it) all this, arrays are of course also just da t objects, and you can operate on them as such.
You can retrieve and set indih idual elements and perform arbitrary computations.

Another way in which API is more powerful is that while sequences are analogots to vectors, the standard
inienncdiate structure in API. is the array. 'M'e fact that arrays are multidimensional makes them a more
tlexible reprcscnwtfit. All of the operators above can be applied to arrays, and to selected parts of arrays
producing results of similar or dissimilar shape.
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The powcrful features provided by AP make it possible to compactly express a wide variety of complex
mathematical algorithms which cannot be expressed in the expressional notation at all. I-or these algorithms.
API. has the virtue of easy understandability, constructibility, and modifiability. UnIbrtunatcly API. has
several drawbacks. First, it does not support any data structures other than numbers, characters, and arrays.
Second, although AIl. supports the expressional metaphor almost completely, it does not support the clement
at a time metaphor at all. Third. due to that fact that it suppols such complex array functions and the fact
that it rejccLi the clement at a time metaphor. API. cannot in general be compiled into cilicicnt code. Fourth.
AP1's approach to loops is embedded into a somewhat cryptic and forbidding syntax. Together, these
features have limited AP,'s impact.

The expressional loop notation presented here eliminates these problems. First- it can handle arbitrary
data structures. For example, to deal with a new aggregate structure, the user need only define new
enumerators and reducers to convert the aggregate to a sequence and vice versa. Second the element at a time
metaphor is part of the basis for the notation. 'lMird, the expressional loop notation deliberately omits all
those operations on sequences which would make it hard to compile. Fourth. the expressional notation is
designed to be added into preexisting languages as a natural extension of their syntax. One need not lcar a
new language and environment in order to use it.

The Listless Transformer

In a Lisp-like language one could decide to support the expressional metaphor by implementing
sequences as lists. Wadler [151 has implemented an interesting prototype system (the listless transformcr)
which is capable of transforming programs containing sequences implemented as lists and eliminating the
actual computation of intermediate lists. 'lie loop notation supported by his system is at heart essentially
identical to APL with lists substituted for arrays. The target of his system is a Lisp-like language called

lswim 115. "ihe example below shows how sequence functions can be defined and used in this language.

def Evector(v) a
Evectorl(v. 0, length(v))
where rec Evectorl(v,.i, end)
if i)end then nil

else cons(aref(v. 1). Evectorl(v. i+1. end))

def rec Fgreater(xs)
case xs of

nil -> nil
cons(x .rest) 0 itf x)0 then cons(x. Fgreater(rest))

else Fgreater(rest)

def Rsum(xs)
Rsuml(xs, 0)

where rec Rsuml(xs, totul) a

Case X3 Of
nil -) total
cons(x, rest) 0 Rsuml(rest, total+x)

def sum-positive-listless(v) a
Rsum( Fgreater( Evector(v)))

It is not clear whether any meta sequence functions arc supported: however, they would be easy to
implement as macros. In any case, the user can implement any sequence function lie desires be defining
arbitrary functions on lists. lswim is a typed language and coercions like implicit introduction of MAPS can be
supported.

Like APi., Wadler', notation is more powerful.than the notation described here in that it sutpports

"!w
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atrbit.rarily complex sequance functions and sequences cart be multi-dimensional sequencevs of sequences. It
goes beyond API. in being able to deal with arbitrary data structures.

Wadlcr's notation also shares API.'s grcatest wcakncsscs. It does not support the element at a time
metaphor. In addition, due to thc fact that arbitrarily complex sequence functions arc allowed, it cannot be

*cfliciendly compiled in the general case. It also -ishares the problem that. since it is not oriented toward the
element at a time metaphor, loops involving side-effects cannot be efficiently compiled.

Coroutines
Another language which supports most of tie expressional metaphor is thc coroutinc language of Kahn

*and NiacQueen 171. They have suggested using parallel processes (coroutincs) in order to represent
* computations communicating via one way channels (sequences). In their approach. unbounded sequences are

implemented as real data obijects which are passed an element at a timne through channels between processecs
executed in parallel. Th e code below ihows one way the vector summing algorithm could be implemented in
their system. Each sequence function is defined as a separate process. Theicse processes can have ordinary
(unitary) input% e~. the VECTOR input of EVECTOR) and outputs (e.g.. die return value of RSUM). Th'ley can
also have channel (sequence) inputs (e.g.. the CHANNEL 1 argument of FGREATER) and outputs (e.g., the
CHANNEL output of EVECTOR). An element is retrieved from a channel by the fuinction (GET channel). An
element can be put into a channel by the functio~n (PUT ilem channel). In order to use tie -sequence
functions, they are combined together in an expression as in die function SUM-POSITIVE-COROUTINE. This

* expression is placed in a DOCO form which causes the three processes to be executed concurrently.

* process Evector vector 0) channel;
vars 1;

repeat7
put(i. channel);
increment 1;

until iOupper-bound(vector);.
put(ctone. channel)

endprocess;

process Fgreater In channell ~>channel12;
vars n;
repeat

get(channell) -> n;
if ncdone or 0>0 then put(n, channel12) close

until n~done
endprocess;

process Rsum in channel 0> sum;
vars n. sum;
0 -> sum;
repeat
get(channel) -> n:
-if not(nmdone) then aum+n -)sum closer

until nadone;
Paturn( sum)

endprocess;

process sum-positive-coroutlng vector
start doco Rsum(Fgroater(Evector vector)) closeco

endprocoss;

flhe langtiage of Kahn and MacQueeni supports neither meta siequence functions, nor automnatic coercions.
However, they could be added if desired. It is interesting to note that, unlike APLt. coroutines directly
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support the element at a time metaphor.
'hV coroutine approach is more powcrfril than the expressional notation along a different dimension from

API.. Fach process is a truly independent parallel process. One aspect of this is that sequeiccs can really be
infinitc. In addition, it is possible for one process to terminate without forcing the other ones to tenninatc' and
processes can dynamically spawn whole networks of other proccsses. 'lthis makes it possible to express modes
of computation which cannot be conveniently expressed with any or the other notations disc scd here.
lowcver, this brings with it a certain overhead. In the example above, the special token DONE is passed
around between the processes so that tie termination of tile EVECTOR process will trigger the tennination of
the other processes.

The key drawback of the coroutine approach is that it is not clear how it can be compiled. Since it
supports the element at a time metaphor, certain logical obstacles arc removed; however, like AlIl., it supports
the definition of arbitrarily complex sequence functions. Going beyond this, given that the coroutine
fnotation is capable of expressing arbitrary parallel computations, one would expect that it will be extremely
difficult to write an optimizing compiler which reliably detects groups of processes which interact merely as
simple loops. Ilowever, without such a compiler, the coroutines impose an unacceptable overhead on the
execution of simple loops.

The expressional loop notation presented here is based on ideas very similar to the corouine notation;
however it is restricted so that it is trivial to compile. The intention is to use the expressional notation to
represent simple loops while reserving the coroutine notation for those situations where its greater power is
required.

Hibl & Model

The language Hibol [12,131 is the -oldest language which both supports the idea of a sequence and is
completely compilable. It is a very high level business data processing language based on the concept of a
flow (which is basically equivalent to a sequence). It is very strongly oriented toward the element at a time
metaphor and relies heavily on the concept of the implicit introduction of MAPS. Thc bxdy of each I-libol
program is a nonprocedural set of expressions specifying the computations on typical sequence elements.

The program SUMPOSITIVEHIBOL computes the sum of the positive elements in a file. (The only
aggregate data type supported by Hibol is a file.) The language provides a few standard sequence functions
(e.g., the operator SUM in the program below). In addition, the operator I F implements the meta sequence
function FILTERS. These facilities make it possible t) specify the body of SUMPOSITIVE-HIBOL as a simple
expression. ]'he DATA DIVISION part of the program describes the files accccd by the program in a format

.... very similar to Cobol.
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/I the program sumpositive.hibol o/
data division

key section
key index

field type is integer
input section
file vector-item

key is index
type is integer

output section
file sum-papositive

type is integer

- computation division
sum-positive is (sum of (vector-Item if vector-item > 0))

Itibol is more powerful than the expressional notation in that flows are multidimensional objects like
arrays where each level of index is an alphanumeric key rather than a number. The I libol operators can be
selectively applied to specific dimensions of a flow. A set of defaulting mechanisms make it possible to
specify a simple program like the one above without having to explicitly specify which dimensions operators
are being applied to. ilowever, the operations which can be applied to flows have been carefully selected so
that all flow expressions can be compiled into efficient loop code.

The -libol compiler clearly shows that an exlresional looping notation can be straightforwardly compiled
even if it supports multidimensional sequences. Nevertheless, when designing the expressional loop notation
presented here it was decided to omit this feature for two reasons. First, it was judged that tlie frequency of
its use would not justify the extra complexity of -supporting it. Second, when a loop algorithm becomes
complex enough that the user is fbrced to specify which dimensions operators are being applied to, the
syntactic mechanisms required cause the resulting expressions to begin to lose the virtue of easy
understandability.

From the point of view of this discussion the primary weakness of Hibol is that it does not provide very
much support for the expressional metaphor. First, it provides a few built in sequence functions. but does not
allow the user to define new ones. Note that files are the only aggregate data structure supported by -libol,

-. and that enumeration and reduction of files occurs implicitly. Second, it Supports only two ineta sequence
functions: MAPS (introduced only implicitly) and FILTERS (tie form IF). Implicit nested loops can be
specified but there is no notion of an explicit looping block.

As discussed above. the expressional loop notation presented here addresses these problems because it can
deal with arbitrary data structures, because it supports the creation of user defined sequence ftinctions. and
because it is intended to be embedded in a language which supports standard control flow constructs. ihe
expressional notation being presented here-could be looked at as taking some of the key ideas embodied in
Ilibol and .cparating them out from the business data processing language context of Ilibol in a form in

- ~ which they can be conveniently added into other languages.
More recently, another language has been developed which is very much like Hibol. This language

(Model II lj) is ha3sd on die same idea of a multidimensional sequence, and is also primarily intended for
' business data processing applications. It is somewhat more powerful, and has a somewhat wider range of

features, but at the level of this dicussion it is essentially identical to Ilibol. It is fully compilahle and has the
same basic advantages and disadvantages. It serves as yet another example that the idea ofa scquence appears
in many dilIkrent fnons in many different languages.



-.".- -'- . .. . ..-, - - -- -- - .+ " " " " ' " - " "- - " " + ' ' ;

Waters -47 - Rferences

References
[1 J.G.P. Blarnes, "Programming in Ada". Addison-Wesley. I .omdon, 1982.
12] T.A. Budd, "An AI11. Compiler". Univ. of Arizona, )ept. of Comp. Sci. TR 81-17, October 1981.

13] G. Burke and 1). Moon, "l-.oop Iteratioit Macro", Mr'r/I 'SIM-169, July 1980.
141 Dl.P. Friedman and ).S. Wise, "CONS Should Not Evaluatc Its Arguments", Indiana Tcch. Rep. 44, Nov.

1975.
151 IJ. Guibas and I).K. Wyatt, "Compilation and Delayed Evaluation in API". in Proc. 5th ACM POPL

Conl, Sept, 1978.
161 P. I lendermn and J.1l. Morris, "A Lazy 'valuator, presented at the SIGPLAN-SIGACI Syrp. on

Principles of Programming Languages, Atlanta, Jan. 1976.
171 G. Kahn and D.B. MacQueen, "Coroutines and Networks ol 'arallcl Processes", in 1977 Proc. IFIP

congress North-lollatid, Amsterdam The Nctherlands, 1977.
181 1H.. Liskov, et. al., "CI.U RcIrence Manual", Lecturc Notes in Computer Science, G. Goos and J.

Hartinanis editors, V114 Springcr-Verlag, New York, 1981.
1q ).A. Moon, "Macl~isp Refcrencc Manual", MIT Cambridge MA, April 1974.

: 1101 R.P. Polivka and S. Pakin, "API.: The Language and Its Usage', Prentice-I fall, Englewtx)d Cliffs NJ,
1975.

1111 N.S. Prywes. A. Pnueli, and S. Shastry. "Use of a Non-Procedural Specification Language and Associated
Program Generator in Software I)evelopmcnt", ACM TOPI.AS, VI #2. October 1979. pp 196-217.

1121 G.R. Ruth. "Data l)riven ILoops". MIT/I .CS/TR-244, 1981.
1131 G.R. Ruth. S. Alter, and W. Martin, "A Very High Level Language for Business Data Processing",

MIT/ICS/I'R-254, 1981.
___1141 M. Shaw and W.A. Wulf, "Abstraction and Verification in AI.PHARI): l)cfining and Specifying

Iteration and Generators", CACM V20 pp 553-564, Aug. 1977.1151 P. Wadler. "listlessness is Ikttcr than Laziness", Ph iliesis, Carnegie-Mellon Univ., (to appear).

1161 R.C. Waters. "Automatic Analysis of the Logical Structure of Programs", MI'r/Al/IR-492, Dec. 1978.
1171 R.C. Waters. "A Method for Analyzing Loop Programs", IIF." Trans. on SoAt Eng.. V5 #3, May 1979.
[1811). Wcinreb and 1). Moon, "Lisp Machine Manual", Mrr Cambridge MA, July 1981.

I

*"

2"

*1 p

-.. " -.



-. *.. .. I !. U I I UoI It I I .. .. ....I U I I I I I U

•lhc Compilation Process - 48- Waters

Appendix A: The Compilation Process

Ilie first section in this appendix describes some assumptions which the macro expansion process makes

ahout the Ibrn of the loop expressions to be processed. 'Ilie user must he careful to ensure that these

aSsumptinms ,re satisfied. The rest of the sections discussc. the actuail macro expansion process in detail. This
discussion is intcnded to function both as detiled documentaion for the actual program, and as a guide to

anyone who wishes to implement a similar system.
'he compilation process revolves around a data structure representing the key information about a

fragment of'looping bchavior. Fach fragment data structure contains all of the information needed to create a

loop corresponding to at sequence function, and information about the inputs and outputs of the sequence

function. A call on a sequence function is represented as an application of a fragment data structure to a list

of arguments. The process of combining several sequence functions together into a single loop proceeds by

combining together the fragment data structures corresponding to them. •

Given a program that contains one or more loop expressions, macro expansion will proceed n;rmally until

the outemost macro in one of these loop expressions is encountered. At that time, die LETS macro package

immediately locates all of tie inner loop macros in the expression and constructs a loop Lombining them all

together. Macro expansion then continues normally until another loop expression is encountered.

'Ihe process of converting a loop expression into a loop occurs in several steps. After locating an

expression, all of the calls on sequence functions in it are converted into applications of fragment data

structures. Similarly, calls on mcta sequence functions are converted into applications of fragment data

structures built out of the functional argurents passed to the meta sequence functions.

Once everything has been reduced to an application, the result is parsed in order to located nested loops.

Any nested loops are isolated and processed separately. A second phase of parsing then performs coercions

such as the automatic introduction of MAPS and AT-END. 'he resulting group of applications is combined

together into a single fragment data structure. This structure is then converted into a single loop.

As an example, the following shows the code which is produced for the loop in the program SUM-
POSIT IVE-EXPRESSIONAL.

(Rsum (Fgreater (Evector vector)))
becomes:(prog T (i end num sum)

(setq 1 0)
(setq end (1- (array-length vector)))
(setq sum 0)

L (cond ((> i end) (go E)))
(setq num (aref vector i))
(cond ((> num 0) (setq sum (+ sum num))))
(setq 1 (1+ 1))
(go L)

E (return-from T sum))

U p

p



Waters - 49- The Compilation 'Process

Interaction With Other Macros
Therc are two important (and unfortunate) restrictions on the way in which the LETS macro package can

cb used which stern from the fact that the package does not have any special knowledge of either system or
usCr defined fexprs or macros. lbese restrictions could be removed if more knowledge %as built into the
compilation proccss

The first restriction is that in a loop expression. every list whose CAR is one of the loop macros must be a call
on that macro. 'The list will be macro cxpanded and combined into the loop. To avoid running afiul of this
assumption, you should never use the namnc of one of these macros as the name of a variable. 'lie only place
where this restriction does not apply is inside of quoted lists.

The second restriction is that fir each variable niame in ih argumenit list of a DEFUNS bound by LET S. or in
the lambda list of a literal hmbda expression passed to a meta sequence Junction every occurrence of that
symbol in the body must be an instance of a rfcrence to that variable. 'The function SUBST will be used to
rename this variable when necessary to avoid name conflicts. lie two main ways that trouble could arise is if
you use a variable name which is the same as a fmnction name. or if you rebind the variable name in some
inner scope. Note that you cannot even use the variable name in a quotcd list.

Another kind of restriction arises from the i1act that the LETS macro package does all of its processing
without expanding any other macros. As a result of this, only lists whose CARs are one oftthe loop macros are
allowed to expand into a loop fragment (as opposed to a conplete loop). In particular, an ordinary macro
cannot expand into code which is supposed to be a loop fragment. This will not work because the macro will
not be expanded until after the loop it is in has already been completely constructed. Note that it is all right
for a macro to contain a complete loop expression which will be converted into a loop as a whole by itself.
The appropriate way to make macros describing kiop fragmernts is to use DEUNS. For example, compare the
following two definitions of a loop fragment which enumerates the CARs of the elements of a list. Only the
second one will work.

(defmacro car.-Elst-buqgy (Input)
- (list 'car (list 'Elist Input)))

(defunS car-Elist (input)
, (car (Elist input)))

Another c( asequence of the fact that LETS does extensive processing before other macros arc expanded is
that you cannot nest one of the expressional macrus insidE' a call of a macro that looks inside of its argumeni.

* For example, even assuming that you define a SET F property for EL 1ST, you cannot write
"(SETF (ELIST L) X)". The problem is that since the loop macros are expanded first, SElF will never get
to see the ELIST. Also note that instances of loop macros are usually replaced by variables in the resulting
loop. lowcver, you can say things like the following "(SETF (CAR (ELIST L)) X)"because the SETF does
not need to look at the argument of the CAR.

The Representation for a Fragment
Loop fragments are represented internally by the following structure:

(S-rraq name ((arg type . info) ...)
irode codel code2 pcode ucode)

MIhe name part of the form is used for producing more understandable error messages. It records what
macro generated the fragment, Tie scond part of the forim is a list of argument descriptors. The symbol arg
is the name of the argument. Every internal use of the argument is represented by that symbol. "li1cre is one
argument declaration for every input, output. and auxiliary variable used by the fiagmncnt. Ihe order of the

0'
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declarations is used to match ie inputs up with parameters when the fragment is used. The symbol arg is
created by GENSYM. It is guaranteed to be unique and occur only in this single fragment. As a result,
renaming does not have to be used when fragments arc combined together. If the fragment is copied. then
the argx are renamed by using SUBST. As a result, every internal instance of the symbol must correspond to a
use of tie variable.

Note that free variable inputs and outputs are not mentioned in the argument descriptors. Rather. they
arc just referred to in the body of the fragment where appropriate. Due to the fact that the order of execution
in a loop expression is preserved, things work out all right when fragments arc combined together without the
system having to take any explicit action. In fact, the system ignores the presence of firee variables entirely.

VLach aiument has a type which is one of the following symbols: UI, SI. O, So, UP. SP. A. and F. 'Tliese
s~inhols are built up out of the filowing code letters. 'Ile use of some of the code letters requires that
additional information be supplied in the info field.

U - UNITARY - This is an ordinary Lisp object. Inputs are given a value before the entire fragment is
cvaluatcd, and outputs pass ott their final value when the whole evaluation is over.

S SEQUENCE - This specifics that the argument is a sequence. 'lThe variable holds successive
clements of this sequence. On each cycle of the loop. each sequence input is given a new value

:-•bcfirc the first time it is read, and the final value of each sequence output is exported out of the
fragment.

I - INPUT - 'Ihis is an input object passed in via nesting in argument position.
0 - OUTPUT - This is an output passed out through the return value. "lbere can be more than one

return value in which case their order specifies which is which in a MULTIPLE-VALUE.
A - AUX - This is an internal auxiliary variable. It must be unitary. If the ifi) field is non-NIL, it

indicates that this variable was specified by the user and must be retained in the final loop produced.

P - OPTIONAL - This is an optional input. When the dcfinition is applied it is converted into either
an input or an aux. 'lle infoh field contains an initializing expression to use when a parameter value
is not supplied for this argument.

F - F LAG - This is an auxiliary flag used in filtered computations. The filtered ,sequences themselves
are carried in scparate variables. 'l'he intfi field is a list of all of tie free variables and return values
which are tinder the control of this filter flag.

The reminnder of the fragment specifics the computation to be performed. The icode is a list of zero or
more expressions which are executed exactly once just before the repetitive part of the loop is executed. The
iodccaniiot refer to any scqticnce arguiments. Itcan read only unitary inputs. It can write any aux, or unitary
output. Its effect is to give initial values to variables. Typically, every unitary output is given some default
vdg'%e.

'111e Codel and code2 are the repetitive body of the Fragment. They arc the only places where sequence
'1irturmcntsi can be referred to. Both of these are lists of" zero or more expressions. Iloth of them are executed
on every cycle of the loop and can read sequence values. i'e code! (but not the code2) can write sequence
values.

lhcre arc two different slots here because of the following property. All the code! parts of all the
fragments being used will be excecuted before all of the code2 parts. This gives you co~ntrol over what is going
on. In particular all terminations are placed in codel parts. As a result, yon can depend on the fict that the
..o2 %ill liot he executed on the cycle where the loop terminates. (The codcl may h e.) If there is a filter
producini, .amc of the inputs read by codel or by code? then both will be ealuated only on those cycles
."here all of the filiered inputs arc available.
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ninations arc represented by putting a COND with DONE in one ofiLs branches in the codel. Filters are
nted by using the form (S-IF flag-lest. actions) in the codel. The effect of the filter is obtained by
g sequence outputs in the actions and making the appropriate flag argument declarations.
pcode is a list of zero or more expressions which is executed exactly once after the loop, if it tenninates

ly. It cannot refer to any sequence quantities., Its purpose is to perfnor epilog computations involving
ay outputs.
mcode is a list of zero or more expressions which is executed in an UNWIND-PROTECT wrapped around

p eventually produced. It cannot refer to any sequence quantities. Its purpose is to perform epilog
ations involh ing the unitary outputs which must be perli'rned no matter how ie loop is terninated.
following examples illustrate the fragment representation. The first corresponds to the sequence

n RLIST. Note the use of some pcode in order to reverse the list CONSed up. The second corresponds
NGE. Note the use of an optional parameter BY. the presence of a terminator, and that the
!ntation of the state is placed in codh-2 so that it will not be done on the cycle on which the loop
ites. The final fragment corresponds to FGREATER. Notice that tie computation of the filter flag is
d from the S-IF which specifics what values are controlled by that flag.

;-frag 'Rlist ((item SI) (result UO))
((sgtq result nil))
((setq result (cons item-result)))

((sstq result (nreverse result)))
0)
;-trag 'Erange ((state UI) (end UI) (by UP . 1) (int SO))
()
((cond ((> state end) (done))) (setq tnt state))
((setq state (+ state by)))
()
0)
-frag 'Fgreater ((lnt SI) (limit UP . o) (flag F big) (big SO))() i

((setq flag (> nt limit)) (S-if flag (setq big tnt)))() :

0)

if the internal macro processing revolves around fragments represented in the above form. They are
-d together into larger and larger fragments and then converted into normal loop code.

Sequence Functions
form (S-APPLY outsfragmenlpmraineter...) is used to apply a fragment to a group of parameters.
r field indicates what variables.(if any) the outputs are being assigned to. T indicates that the outputs
being returned. Sequence finctions are merely macros which expand into S-APPLYs of fragments.
lustrated by tie following pair of expressions. Note that r ,l1 time the fragment is instantiated, the
ts in it are renamed it that there cannot be any name clashes.

(Al lst x)
1e as: (S-apply T (S-frig 'Rlist ...) x)

rnly intercsting thing which happens when a sequence function is expanded into an S-APPLY is the
1 of optional arguments. If a parameter is provided, then the argument list of the fragment is
A that thc argument is specified to he a normal input. If no parameter is supplied then the argument

,o.
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converted into an aux and the initializing expression is used to give the argument a value either in the icfjde
if it is unitary) or in ie codel (if it is a sequence value). Note that this expression is evaluated inside the
ragment and can refer to all of the arguments which precede it. h'lc case of an optional argument not being

Lpplied is illustrated below. Note the general brin of this fragment shown above.

(Erange 1 10)
same as: (S-apply (S-frag 'Erange ((state UI) (end UI) (by A) (int SO))

((setq by 1))
((cond ((> state end) (done))) (setq tnt state))
((setq state (+ state by)))
()( ))

10)

The way the S-APPLY forms created by sequence functions are themselves handled is discussed below.

Meta Sequence Functions

l.ike sequence functions, meta sequence functions produce S-APPLYs of fragments. H-owever, unlike a

equence function, siome of the arguments to a meta scquence function are used to compute % hat the
ragment should he. The meta sequence function REDUCES is used as an example in the pair of forms below.
4ote how the iuiw hIeld of the S-F RAG is used to record the initial meta sequence function expression.

(ReduceS #'(lambda (a b c) body) iii seql seq2)
same as: (S-apply (S-frag '(ReduceS #'(lambda (a b c) body) init seql seq2)

((In UI) (b SI) (c SI) (a UO))
((setq a in)) "
((setq a body))()
()
0)•init

seqI
seq2)

Note that since the variables of die literal LAMBDA become variables of the resulting fragment, they must
le unique in dy, because SUBST may be used to rename them. If a literal function name is used instead of a
teral LAMBDA, then it is converted into a LAMBDA.

Locating Loop Expressions
leforre a loop expression can be processed, it hits to be located in ils entirety. "llicre arc three ways in

,hich this can happen. 'lhe easy case is when the loop is delimited by a LETS or DEFUNS. In that case there is
o difficulty in identifying it.

"ll1e second case is also quite easy. Whenever any of the sequcnce functions or the mecta sequence
inclions is encountered unexpectedly (i.e.. not during the processing of a loop which has alleady been
)cated) it is wrappcd in a LETS. Processing then continues as if the LETS had always been there.
The third process is much more complex. As soon as a loop expression is located by either of the above

iceilods, all of the sequence functions and meta sequence functions inside it arc expanded into S-APPLYs.
ny LETScs found inside are processed completely as subloops before processing continues on tie outer loop.
Note that no other macros arc cxpaaded at this stage or at any stage during the processing of loop

iprcssions.) Once this is done the result is parsed in order to detect nested loops. Once they arc located,
icy are wrapped in LE IS.- and ittimcliaiy processed.
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Nested loops are I:atcd by looking at the types of inputs and outputs to S-APPLYs inside a Ioop
expression. ']c types art: specified in the argument lists of the fragments the S-APPLYs are applying. To j
simplify the discussion assume for the moment that every function in a loop expression took cxactly one
argument. I:vcry S-APPLY Iakes in cither a unitary thing U or a scquence S and rcturns one of the two. They
will be annotated as eiler U-U. U-S, S-U, or S-S.

Consider the examples below of how fragments can fit together. Thc first example shows a loop
expression where everything fits together, and there is no nested loop. The second example shows the
prototypical case of a nested loop. If the two inner fragments are grouped together into a subloop and then
M4APScd over the stream coming out of the first fragincnL then cv-rything will work fine. Otherwise there is
no good way to make things fit together. The search for nested loops focuscs on finding balanced

subexpressions which clash with their surroundings at both ends. The only real difficulty is that the
expression as a whole may he unbalanced at either end (as shown in the final two examples) so there is no

dependable place where parsing'can start.

(Rsum (Fgreater (Elist x)))
U-s s-s S-U

(Rlist (fist (Elist (Elist x))))
U-S U-S S-U S-U

parsed as: U-S (U-S S-U> S-U

(Mist (El1st (Elist x)))
U-S S-U S-U

parsed as: <U-S S-U> S-U

(R1ust (Rlist (El1st x)))
U-S U-S S-U

parsed as: U-S (U-S" S-U>

Note that ordinary functions embedded in loop expressions are MAPScd if they end up receiving a
sequence and otherwise are just executed normally. Therefore, they always return the same type that they
receive and do not have to be considered when looking for nested loops. The real parsing algorithm has to

work on trec-likc expressions and is extended accordingly. It looks for balanced subtrees which clash with 0
their surroundings at both root and fringe. They are then separated out as subloops.

LetS
One purpose of a LETS is to delineate a loop as discusscd above. The other is to define sequence variables.

All of the variable value pairs are simplified as shown below by putting the initializing expressions inside the
LETS. Note that this means that these expressions cannot refer to the values which any of the bound variables
have outside of the LETS. Destructuring is handled by expandir.g it into a group of SETQs.

(lets ((x (Erange 1 10))
((a b) (Elist list)))

(reverse (Rlist (list 'item x (+ a b)))))
* becomes:(lets (x a b y)

(setq x (Erange 1 10))
(setq y (Elist list))
(setq a (car y))
(setqy (cdr y))
(setq b (car y))
(reverse (Rlist (list 'item x (+ a

Note that the only variables which carry sequences inside the body of the LETS are the ones specified in

the bound variable lisL All of the free variables referred to in the body are unitary no matter what they are in
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the place where they are defined. This reflccts the fact that if this loop is nested in another loop then it will be
MAPSed and so any sequences in that loop will look like unitary values from its point of view. Note that if
sequences were multidimensional objects a% in API. then things would be much more complicated because
each level of tooping would only strip a single dimension off of a sequence.

Implicit MapS, and Coercions

Th11e pricvssing of the body of a LETS start% by breaking apart all of the S-APPLYs as folklws. SETQsof new
variablcs are created as needed so that every argument to an S-APPLY is a variable, and the output of every S- r1
APPLY is immediately put in a variable. Ihis transformation is illustrated below. Note that the output
variable fields of the S-APPLYs are used to specify the destinations Ir their outputs. Ihc use of a MULl IPLE-
VALUE will lead to a list of more than one variable in this field. The types of the variables arc chose, so that
the types match the argument types of the fragments and so that the. inputs and outputs to an ordinary
expression are all of the same type. The fact that nested loops have already been removed guarantees that this
is in fact possible. Note that execution order is preserved when expressions are broken apart.

(lets (x a b y)
(setq x (Erange 1 10))
(setq y (Elist list))
(setq a (car y))
(setq y (cdr y))
(setq b (car y))
(reverse (R11st (list 'item x (+ a b)))))

becomes:(let (ul u2 u3)
(lets (x a b y z)

(setq ut 1)
(setq u2 10) . V
(S-apply (x) (S-frag 'Erange ...) ul uZ)
(S-apply (y) (S-frag 'Elist ...) list)
(setq a (car y))
(setq y (cdr y))
(setq b (car y))
(setq z (list 'Item x (+ a b)))
(S-apply (u3) (S-frag 'Rllst ...) z) S

(reverse u3)))
becomes:(iet (ul u2 u3)

(lets (x a b y z)
(S-ri*oly (ul) (S-frag '(at-start #'(lambda () 1)) ...))
(S-.kply (u2) (S-frag '(at-start #'(lambda () 10)) ... ))
(S-apply (x) (S-frag 'Erange ...) ul uZ)
(S-apply (y) (S-trig 'Elist ...) list)
(S-apply (a) (S-frag '(mapS #'car ... ) ... ) y)
(S-apply (y) (S-frag '(mapS #'cdr ... ) ... ) y)
(S-apply (b) (S-frsg '(mapS #'car .. ) ... ) y)
(S-apply (z) (S-friag '(mapS #'(lambda (m n o)

(list in (+ n o))) ...) . ).
xa b) S

(S-apply (u3) (S-frag 'RPlst ...) z)
(S-apply I (S-fraig '(at-end #'reverse ... ) ... ) u3)))

While things are being decomposed, the following coercions are applied. Every ordinary expression which
was nested in an S-APPLY which requires a unitary value is computed AT-START. Every ordinary expression
which appeared at top level and which receives unitary output values from sequence functions is computed
AT-END. Fvcry other ordinary expression 'is NAPSed. RLAST is used to coerce the value of the last form to -

unitary if it isn't unitary already. These coercions lead tc the third version of the LETS above. Note that the
introduced mete .. quencc functions are immediately expanded into S-APPLYs.

o,
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Combining Fragments
Once all of the appropriaic coercions have been applied, the fragments are combined together into one

large fragment. 'Ibis is done in two stages. First, each S-APPLY is converted into a naked fragment. Note
that every argument to an S-APPLY is a variable, and its outputs go directly t) variables. ('The example below
shows the RLIST in the example program above.) The S-APPLY is converted into a naked fragment by merely
renaming the arguments to the appropriate variables and making them free as shown.

(S-apply (u3) (S-frag 'Rllst ((item SI) (result UO))
((setq result nil))
((setq result (cons item result)))
()
((setq result (nreverse result)))
0)

Z)
becomes:(S-frag ()

((setq u3 nil))
((setq u3 (cons z u3)))

.((stq u3 (nreverse u3)))
0)

Any outputs which are not used are converted to aux variables. After this phase, the only arguments
which remain in fragments are aux and flag variables. The outputs of the last form in the LETS are retained as
return values and will be used as the return values fi)nn the loop as a whole. Note that the last form may be a
VALUES.

Now that everything is a fragment, they are all combined together starting at the top. 'Ibis combination
goes pairwise as shown below. The new fragment is created merely by concatenating the correspondingparts

*" "" of die two initial fragments. As a result, the order of evaluation is preserved. Note that due to all of the
*):i renaming that occurred above, all of the dat i flow works out right without any special processing being

necessary. Also since all variable names in the original fragments were GENSYMs there is no possibility of
* unintentional name clashes.

S(( -FRAG argsa icodea codela code2a pcodea ucodea)
(S-FRAG argsb icodeb codelb code2b peodeb ucodeb))

.._.. becomes: (S-FRAG argsa-argsb

icodea-icodeb
codela-codelb

: code2a-code2b
pcodea-pcodeb

.. ucodea-ucodeb)

Thc only complexity is involved with filters. If any of the variables read by odelb or code2b are
controlled by filter flags in the first fragment, then both codelb and code2b are nested in S-IF forms

* , predicated on the AND of these flags. For example, suppose that codelb reads two sequence variables S I and
. S2. which are controlled by the flags F1 and F2 respectively. In this case, codelb would be converted to

(S-IF (AND F I) . codelb) before combination. Code2b would be converted analogously.

,-.4
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The Form of the L.oops Produced
Once all of the fragments have becn combined into a single largc fragment, this fragment is converled into

a loop as indicated below. The various parts of the fragment are merely concatenaled together into the Ix)dy
of a PROG. Var-list is a list of all of the aux, flag. and return variables which are specified in arg-Iis. 4hc
return-values are the return variables from arg-ist. If the fragment contains any ucode then the PROG
produced is wrapped in an UNWIND-PROTECT containing this ucode.

(S-FRAG args icode (T codel code2) pcode)
becomes:(PROG T vairisl

S icode
L code)

code2
(go L)

E pcode
(RETURN-FROM T relurn-values))

Note that the PROG produced is just basic lisp. (On the L ,ispMachine this PROG is named T so that it will
be transparent to the user.) l he PROG contains a number of variables and tags created by the macros. These
arc all GENSYMs and so that they cannot conflict with any user variables. As a debugging feature, the macros
make sure that all of the stream variables specified in a LETS become variables in the PROG. At a btreak point
you can look at these variables in order to see the current element in each of the corresponding sequences.
Also for debugging convenience, the variable LETS:S-PROG holds the PROG produced from the most recently
macro expanded loop expression. You can look at it in order to se exactly what code was produced.

The form (DONE) expands into (GO E). 'rhe form (DONE. resulls) expands into (RETURN. results). Note
that no special action is taken with regard to terminations, they just end up in the right places as things ar
combined together. The form (RESTART) expands into (GO S). This also just ends up in the right place.
The form (S-IF pred. aclions) expands into (COND (pred. actions)).

.4

DefunS
niTe purpose of a (DE FUNS name lambda-list, body) is to define a sequence function. The body is exactly

like the body of a LETS. In addition the aux variables in the lambda-list are just like LETS variables. These
variables and the body are processed exactly as described above in order to create a fragment. The arguments

in the lamnb'da-list specify that some of the free variables in the fragmen't are actually non-free inputs. The
fragment is modified to reflect this. Note that these variables must be unique in the body sw that the system
can use SUBST to rename them. A sequence fIunction macro is then constructed with the appropriate name.

Variable Simplification
One problem with the compilation process outlined above is that it creates a vary large number of

variables which end up not really doing anything useful. Due to the fact that the I.ispMachine compiler is not

capable of optimizing away these variables, the macro package performs a set of simplifications in order to get
rid of them itself.

'lhe following simplifications are performed wherever possible. Note that this process is applied only to
the variables created by the system. The variables explicitly declared in a LETS are never removed, and any

free variables used in the loop are never removed.

4I
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1) If a variablc is never read than it is elinminated. Any compljutations performed to assign values to it
arc also eliminated if it can be established that there is no possibility ol'a side-erfect oc~curring.

*2) If you have (SETO X Y) and X is SETQed only once and Y is not SHOWe in thc range of reading X.
then thc two variables can be merged together into oine variable eliminating whichever one can be
eliminated.

*3) If you have (SE TO X EXPR) and X is read only once,and nothing read by EXPR is modificd between
here and the use of X and there is no possibility of trouble with side-clfects from moving EXPRt, then
EXPR can by substituted fior X eliminating X.

Another area where needless complexity results is filters. Trhe processiing above leads to the use of a
numberof flags and S-IF forns. Trhc-s are simplified as follows: If two S-If s in a row arc predicated on the
same flag expression then they are combined together into one in order to reduce the number of~references to
the flags. When this is done in conjunction with the variable simplifications above, simple cases of filters end
up as just, simple CONDS.

V41 r
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Appendix B: Functional Summary

This Appendix is intended as a short reference manual for the system. It assumes that you have alrcady
read the rcA of the paper and just gives a very brief description of each of the macros available to the user.
The macros are listed in logical groupings. Note that all of these macro names arc global on the LispMachine.
The summary begins with a description of the basic macros.

lts ((var value) ... ) &rest body
lhis has two purposes: to define a group of variables which contain sequences of values, and to
indicate that a group of sequence expressions (the bo dy) should be combined together into a single
loop. Fach value will be coerced to a sequence. If it is omitted (or if the var-value pair is rendered as
merely a symbol) then the initial value is undefined and the variable must be written befire it can be
read. A tree of van- instead of a symbol can be specified, in which case dstructuring is performed.
Note that every free variable is per force unitary.

All of the expressions in the body arc combined into a single loop. Fach unitary expression in the
body will be automatically MAPSed if possible. 'Ie only time it is not possible is if it uses the output of
some reducer. In this latter case, the expression will be automatically computed AT-END. 'The value of
the last expression in the body is coerced to unitary and returned as the value of the loop.

In the body. you can use SETQ toassign to a sequence variable. MULTIPLE-VALUE can be used to
access the multiple values of a sequenie function. 'he last form can be a VALUES indicating that
multiple values are to be returned from the loop as a whole.

dof unS name lambda-list &re st body
eli purpose of this form is to define a new sequence function. The lambda-list is just like an ordinary

lambda list except that it supports only the following four keywords. &UNITARY indicates that
following arguments are unitary. This is the default to start with. &SEQUENCE indicates that the
following arguments carry sequences. &OPTIONAL indicates that the following arguments are optional.
&AUX indicates that the following arguments are internal variables. With both of the last two cases
default values can be specified by rendering the argument as a variable-valc pair. If no default value
is specified then the value the variable is undefined, and the variable must be written before it can be
read.

DEFUNS defines a macro of the specified name defining the sequence function specified by body.
The body is exactly like the body of a LETS except that it is not immediately coded up into a loop, and
the value of the last expression is not coerced to unitary. Rather, this value is returned whether it is
unitary or a sequence.

done &rest resuls
In a loop expression the macro DONE can be executed in order to indicate that the loop should be
immediately terminated. If no results are specified. then the loop will be terminated normally
executing all AT-END code, and returning the result specified by the last expression. If any result
arguments are supplied then they will be returned as the values of the loop. Note, however, that in this
case any AT-END code will be skipped. Any AT-UNWIND code is executed in either case.

rostert
l.xecuting this inside of a loop expression causes the immediately containing loop to be restarted at the
beginuing. All of the loop variables are reinitialired. rypically, imc side-effects will have been
performed so that restrting the loop will lead to a different computation.

"",: -'- ,.............".". ..... . . : ..... ..... .... ... '. ;- .i:." ".-..
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Meta Sequence Functions

lhe meta sequence functions take in ordinary functions and convert them into scqucncc finctions. Each
one takes in one or more functional arguments. Each of these can be either a quoted function name, or a
quoted lambda expression, ora macro which expands into either one.

mpS function sequence...
'lie nth elcmcnt of the output sequence is computed by applying fianwiin to the nth elements of the
input sequences. iHowever. if the nth clement or any of the input seluenccs is empty then function is
not applied and the nth element of the output is empty. Note that the length of the output sequence is
the same as the length of the shortest input sequence.
e.g., (maps #'+ 1-2 3 4] [12 -3]) a) [2-_6]

scans function i1iu sequence...
Ibis is just like MAPS except that it has an internal state variable. 'Thc initial (zeroth) value of this
variable is the unitary value mit. 'lhe elements of the output are the successive values of the state not
including its zeroth value. lh nth value of the state is computed by calling fuict ion with the prior
value of the state as its first argument and the nth elements of the inputs as its remaining arguments.
However. if the nth element of any of the input sequences is empty then function is not applied, the
state is not changed. and the nth element of the output is empty. Tihe length of the output sequence is
the same as the length of the shortest input sequence.
e.g., (scans #'+ 0 [1_-2 3 4) =>[1_3 6 10]

I I terS.function sequence...
rhe elements of the output sequence are computed as follows. If the result of applying function to the
nth elements of the input sequences is non-NIL then the nth eclement of the first input is used as the nth
element of the output; otherwise the nth output element is empty. However, if the nth element of any
of the input sequences is empty then function is not applied and the nth clement of the output is
empty. Note that the output sequence is exactly the same length as the shortest input sequence-
however, some of the output sequence slots may be empty.
e.g., (filterS#'> [1-2 3 4] O 2-_3]) -0 [ --_]

ieduceS function init sequence...
'Ibis creates a sequence finction with an internal state variable. The state is initialized to the (unitary)
value init. The nth value of the state is computed by callingfiunction with the prior value of the state as

. isi first argument and the nth elements of the inputs as its remaining arguments. Iowever, if the nth
element of any of the input sequences is empty then function is not applied and the state is not

.. changed. When the input sequences arc exhausted, the final value of the state variable is returned as
IF .the (unitary) result. If there are no non-empty elements in the input sequences then the value init will

be returned. This form is equivalent to: (RLAST (SCANS function initsequence...) init).
e.g., (reduceS 0' + 0 [1 2.3) E1 -2 3 4]) >8
e.g., (reduces #'+0[] [1-_ 23 4]) a) 0

gene. toS function init sequence..
!"U This uses an internal state variable in order to generate a potentially infinite sequence of values. The

unitary valtme init specifies t e initial (first) value of the state. On the nth cycle of the loop, function is
called with the nth value of the state as its first argument and the nth elements of the input sequences

"-' .(if any) as its remaining arguments in order to compute the next value of the state. I lowevcr, if the nth

.. . . . . . . . . .
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element of any of he input sequences is empty then Junction is not called and the value of the state is
not changed. 'lbe output sequence consists of all of the values of the state including the first one init.
If'there are no input sequences (the normal case) or if none of them are finite, then th! output will be
infinite. II" any of the input sequences is finite, then the length of the output will be the same the
length of the shortest input. Note that in this case. the final value of" the state will not be returned as
part of the output.
e.g., (generateSl' 14 0) 0 [0 1234 557 ...]
e.g., (generateS C (lambda (prey new) new) NIL [1 23 4]) a) [NIL 1 2 3]

truncates funclion sequence...
This is used to create sequence functions which take in potentially infinite sequences and return
sequences which have been truncated to finite length. " lbefunction argument is applied to successive
groups of corresponding elements of the input sequences. 'lihe output sequence is composed of the
elements of the first input sequence up to but not including the first element corresponding to a
non-NIL evaluation offunclion. As with the other meta sequence functions. irany of the nti elements
or the input sequences are empty then finction is not applied and the nth output element is empty.
Note that the output sequence is typically shorter than any of the input sequences, and can be of length
zero.

e.g., (truncateSl<( 1_-2 3 4] [0 2_4]) -) 1__]

e.g.. (truncactes # E1- 2 3 4 0 2_4J) -0

enumerates truncao-function gencrale-function init
This is an abbreviation for (TRUNCATES inincate-function (GENERATES generae-function init)). It is
the preterred way to define an enumerator. "

e.g. (enumerateS 'zerop' -, 5) a> [S 4 3 2 1]

at- start function arg...
This computes (function arg...) in the initialization code before a loop begins. All of the args must be
unitary values.

at-end function arg...
'This computes (function arg ...) in the epilog code after a loop ends. All of the args must be unitary
values. They can be values returned by reducers. Note that this will not be executed if the loop is
terminated via a DONE with arguments or by some extraordinary exit such as a THROW.

at-unwind function arg...
This computes (functionarg...) in an UNWIND-PROTECT wrapped around the loop. All of the args

must be unitary values. They can be values returned by reducers. 'lie difference between this and AT-
END is that it will be executed no matter how the loop is terminated.

lp
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Pi.. ±4fined Generators
-sequencea arg

This takes in a unitary argument and produces an infinite sequence of that value. Note that the
successive elements of the sequence will all be EQ.

i ;i e.g., (Gsequence 1) a) [I I I ...]

* ' Gprevious sequence&opttonal (first NIL)
l'is takes in a %cquence and returns a sequence which is shifted right one position. First is used as the
first element of the output. and the last clement of the input is discarded.

e.g., (Gprevious [12 3 4] 0) O> 012 3]

G ist list
'h is generates the successive elements oflist. It will get an error if it encounters a non-list CDR.

e.g.. (Gllst '(12 3)) 12 3 NIL NIL NIL .3J

Gsubl lste list
This generates the successive CDRs of list. It will get an error if it encounters a non-list CDR.
e.g.. (Gsublists '(1 2 3)) :> [(12 3) (2 3) (3) NIL NIL NIL ...

Grange &optional (first 1) (step-size1).
This gcnerates fixnums from first adding step-size at each step. Note that step-size can be negative.
e.g.. (Grange 10 2) .> [10 12 14 ...]

Predefined Enumerators r

Eliot list
This enumerates the successive elcmentsof list up to and not including the first NULL sublist. It will get
an error if it encounters a non-list CDL

e.g.. (El st '(12 3)) [12 3]
e.g., (El Ist nil) 0[

Eoubi lots list
This enumerates the successive CDRs of list up to and not including the first NULL sublisL It will get an
error if it encounters a non-list CDR.
e.g. (Esubl sts '(1 2 3)) >'[(I 2 3) (2 3) (3)]

E1sts list
This enumerates the successive elements of list up to and including the first NULL or non-list sublist.
e.g., (Elist, I(12. 3)) a> [12 3]
e.g.. (El ist NIL) -> [NIL]

Ep l st plist > sequence-of- properties sequence-of- values
This creates two sequence outputs consisting of the successive property names and property values

respectively of the naked plist plist. Note that the function PLIST returns the CDR of a naked plist. not
a naked plist.

e.g., (Epl Ist '(NIL A 1 e2)) a> [A 0] (1 2]
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E I1 st alisi m> sequence, of-kmys sequence-of- values
Ihis creates two sequences as outputs consisting of the successive keys and values respectively of alist.
It requires that the lists of values associated with each key be lists. Thcy may have 0, 1, or more values
in them.
e.g.. (Eal st '((A) (8) (C 23)))0 [AC C][12 3]

Erange first last &optional (step-size 1)
Creates a se4uence of integers by counting from first to last by the positive increment step-size.
e.g., (Erange 4 8 2) -> [4 6 8]

Evector vector&optional (firstO) (last(l- (array-length vector)))
ibis enumerates the successive elements of a one dimensional array. You can specify a subrange of
indices by specifyingfirst and last. (Note that this will not work on Maclisp arrays of numeric type.)
e.g., (Evector <1 2 3>) a) [/r2 3]

Ef1 1 file name
'Ibis creates a sequence by doing successive reads on the file until end of file is reached. Filename can
bc anything acceptable to OPEN.
e.g., (Efle "data. Isp") -> ( 12 3]

if the file contains "12 3"

Predefined Filters
Fgreater sequence&optional (limit 0)

This takes in a sequence of fixnums and restricts it to a sequence containing only elements greater than ' '
limit.
e.g.. (Fgreater [12 3] 2) 0 (.3]

Predefined Reducers

RI ast sequence &opt onal (defaul(NIL)
"lhiis takes in a sequence and returns its last value. If the sequence has zero length then default is
returned.
e.g., (Rlast [12 3]) > 3
e.g., (Riast C] NIL) > NIL

Rignore sequence
"llis takes in a sequence and returns no values at all. It is useful in many of the same situations as
MAPC.
e.g., (Rlgnore [1 2 3]) a)

RIst sequence
This creates a list of the elements in sequence. The order of the elements is preserved.

e.g., (RIist [12 3]) > (1 2 3)
e.g.. (R1 ist [ )NIL

S
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Rbag .equence
'This creates a list of the elcments in sequence. lhe order of the elemcnts in the list is undefined. This
is more efficient if you really do not care what the order is. ('l'he order ends up reversed, but you
should not depend on that, because it could change at any time.)
e.g., (Rbag [i 2 3]) 0> (3 2 1)

R1 It 0 sequence
'Ibis creates a list of the elements in sequence with the last element of the sequence ending up as the
COR of die last CONS ccll in the list.
e.g.. (R 1st. [12 3]) -> (12. 3)
e.g.. (RI ist. [1]) a> 1
e.g., (R 1st. []) > NIL

Raconc sequence
-'his creates a list by NCONCing together the successive elements of sequence. 'his is what MAPCAN does
to create its output.
e.g.. (Rnconc [(12) NIL. (3 4)]) a> (12 3 4)

Rappend sequence
'Ibis creates a list by APPENDing together the successive elements of sequence.
e.g., (Rappend [(1 2) NIL (3 4)]) a> (12 3 4)

R"ot sequence
rhis combines the clemcnts in sequence into a list omitting any duplicate elements. The order of this

list is undefined. 'Mle predicate.which is used to test for duplicates is EQUAL.
e.g., (Rset [1 1 (2) (2)]).-) ((2) 1)

Reqset sequence
This is the same as RSET except that the test ror duplicates is EQ instead of EQUAL.
e.g., (Reqset [11 (2) (2)]) x> ((2) (2) 1)

RpI 1st sequence of-properlies sequence-of- values
This takes in a sequence of property names, and a sequence of values and creates a naked plist. Note
that the finction SET PLIST expects to receive the CDR of a naked plist as its second argument
e.g., (Rp1ist [A B] [1 2]) x> (NIL B 2 A 1)

Ra1l t sequence-of-keys sequence-of-values
This takes in a sequence of keys. and a sequence of values and creates an alist. All of the values which
have the same key arc combined into a single entry in the alist headed by the key. The predicate which
is used to test for equality of keys is EQUAL.
e.g., (alst [(A) S (A) B] [12 3 4]) a> ((B 4 2) ((A)3 1))

Reqal let sequence-of -keys sequence- of- values
This is identical to RALIST except that the test for key equality is EQ.

e.g., (Reqalst [(A) B (A) B] [12 3 43) a> (((A) 3) (B 4 2) ((A) 1))

F-'.:.



Functional Summary -64- Waters r

Rvector i'eclrsequence&optional (flsiO) (last(l- (array-length vector)))
'Ilis takes in a one dimensional array and a sequence of elements and stores those elements in
successive positions in the array. You can specify a specific subrange in the array. ('ibis will not work
with Maclisp arrays of numeric type.) Note that this reducer is unusual in that it contains a terminator
and will stop the loop as soon as the vector is full.
e.g.. (Rvector <NIL NIL NIL NIL [12 3]) =) <1 2 3 NIL)
e.g.. (Rvector <NIL NIL) [1 2 3]) -> <1 2>

Rf .l1 file-name sequence
'is takes in a sequence and writes all of its elements into a file. Pile-name can be anything acceptable
to OPEN.
e.g.. (Rfile "data. 1lsp" [12 3]) *> T

"(cr>I <cr>Z <cr>3 " is printed in "data.lisp"

Rsum sequence-of-integers
Computes the sum of the integers in its input
e.g., (Rsum [12 3]) a) 6

] RituS sequence-of Jlonurns r
Computes the sum of the flonums in its Input.
e.g.. (Rsum($1.1 2.2 3.3]) ->8.8

Rmax sequence-of-numbers
Computes the maximum of the numbers in its input. Returns NIL if the input has length zero.
e.g.. (Rmax [1 2 3]) 0 3
e.g.. (Rmax []) w) NIL

Rimi n sequence-of-numbers
Computes the minimum of the numbers in its input. Returns NIL if the input has length zero.
e.g.. (Rinin [1 2 3]) a> I
e.g.. (Rmin [) ) IL

Rcount sequence
Computes the number of elements in its input.

* e.g.. (Rcount [1 2 33) -> 3 .

Rend sequence
Computes the AND of all of the clements of sequence. As with AND, the return value is either NIL or the
last element of the input.
e.g.. (Rand [12 33) m) 3
e.g.. (Rand (1 NIL 2]) n) NIL
e.g.. (Raiid []) 0> T

Rand-fast sequence

T'bis is the same as RAND except that the loop is terminated as soun as a NIL value (if any) is
' |encountered.

e.g.. (Rand-fast [12 3]) 0 3

r-9
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puence
'omputes the OR of all of the elements of sequence. As with OR, the return value is either NIL or the
Iirst non-NIL element of the input.
e.g.. (Ror (12 3]) -> I
e.g.. (Ror (NIL NIL]) -) NIL
e.g.. (Ror []) a) NIL

ist sequence r
Ihis is the same as ROR except that the loop is terminated as soon as a non-NIL value (if any) is
ancountcrcd.
e.g.. (Ror-fast [12 3]) > 1

r
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